
Hardware Acceleration of Logic Simlation using a Data Flow Ilicro Architecture

Gary Catlin - Bill Pasemn

DaiSY Systm Cot-p, - 700 Middlefield Road, Mountain View Ca,
Abstract

Current digital logic simulators running on
l nglneerlng workstations lack capacity and speed.
This paper discusses a hardware accelerator for a
workstatlon sfmulator whfch addresses these problems.
The accelerator runs 100x faster than Ita software
counterpart and can slmulate up to 1 mfllfon gates.
The accelerator has been built and is being sold
commercially. The archftecture of the accelerator is
sfmflar to that of a classical dataflow machlne. We
describe the architecture of the machine and
Illustrate how It would sfmulate a simple circuit. We
then briefly dfrcuss the relatifnshlp between event
driven simulation and dataflaw.

1.0 Introduction

Logic Slmulatfon capsbllity la one of the key
selection crfterfa for people evaluating
workstations. Workstatfon based simulators provide a
number of advantages over simulation alternatives on
other machfnes. They run on the design engineer’s
stand alone station. orovldlna results aulcklv .~
w 1 thout compet 1 ng for ’ ma infraie resources. The;
usually exceed the modeling capablllttes of most home
grown simulatorsi 12 state model lng, MOS ,
Btdlrectlonals, Functfonal model lng). They are
fntearated with the schematfc capture facil itv. 30
that-wfth a small number of steps‘, the user is-.able
to go from schematfc editing to sfmulatfon. However,
there are two lmportsnt areas of concern where
workstatfon stmulators fall short. Thfs paper
descrfbes a product, the Daisy Megalogiclan, whfch
addresses these areas.

1.1 Capacity

The ffrst 1s capscfty. Usually, only circuits
with a few thousand simple 01 ements can be
successfully run on an engineering workstation.
Sfmulators with this l lze limitation are useful for
checking out pieces of a design, but they are only
capable of completely almulsting the smallest of IC
and board designs. Thls problem can
overcome by addtng extra memory to the

be partially
This

approach will allow users to perform
system.

sfmulatlons
most large ICs and ems11 systems. Desfgns in thz
range Include 16-bit VLSI microprocessors whtch are
fn the IB-15K gate
board with 160 TTL &?“?c”Is,

and a typfcal Multtbus

prfmftlves to describe.
whfch mlght require 2-3K

However, there is a growing class of users who
require the cspabll ity to simulate I00k or
gates. Typically, these users are developlng

more

computer
large

systems. One CO” argue that behavtoral
models can be used to represent ill of the blocks fn
the design which are not being immediately
with a slmulatfon vector “capture/compare’

debugged,
facfl fty

to ‘JerlfY Consistency between the behavioral and gate
level descrfptfons. However, even users who
thts method for debug-level

accept
sfmulatfons

desfre to run the complete system at the
express a

gate level
at least once prior to commftmant to
fmplementatfon.

physlcal

permission to copy without fee alt or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
n.crmission of the Association for Computing Machinery. TO copy
otherwise, or to republish, requires a fee and/or specific permission.

Q 1985 ACM 0-89791-172~5/85/0012/0117$00.75

Also, when one studfcs the growth of the sfze of
typical IC and system level one real Izes
that many engineers will be

designs.

deve’o~l;g
cfrcults fn

the 100k - 500k gate range fn a years. These
engineers will also wish to simulate at the
level at least some of the time. Therefore the cyizz
of users which require sfmulations will
grow as well.

100k gate

1.2 Performance

The second major concern Ts
workstatfons

performance. When
are stocked wfth enouoh mbmorv to

completely solve all size problems, then sfmulatlon
speed becomes a problem. Stmulatlon soeed fs measured
by how much real’tlme elapses from the
of the required

specif Icatfon
slmulatfon until results are

presented In an analyzable format. Stnce logic design
and debug Is an Iterative process, a fair measurement
is found by seeing how long It takes to make a small
change in a cfrcuft. recompfle and resfmulate. For
10K gate design the time breakdown might be 1
for compflatlon and 1 hour for

ho”:
almulatfon.

for a 64K gate desfgn,
However,

the time mtght be 6 hours for
compilation and 1 day to simulate a test
whole set of dfagnostfcs might take

case. A
six monthes to

sfmulate on such a deslgn. Obviously, the
would have to be content with a

eng Inter

simulation,
piece

and perhaps a sampllng of
by piece

test
running on the complete

patterns
system. He might build a

breadboard versfon of the desfgn to pcr;y:m logic and
timfng checks that aren’t possfble on simulator
simply because It 1s too slow. Fault simulation is
another area where simulation tfme la a limitstfon.
Even for concurrent simulators, med i urn cfrcufts
require several hours to grade and medium large
circuits must run overnight.-Agafn, the job Is hardly
interactive.

Clearly, providing a slgnff icant1y faster
simulator allows:

(11 a speedup of 2-10 in the logic debug iteratlon
cycle for large and very large desfgns,
(21 the capabflity of maklng fault sfmulatfon much
faster, and
(31 the capabfllty of movfng system level
and diagnostic development from

debugglng
breadboards to the

engineer’s desktop.
This paper is organized 1 nto 9 main sectfans.

After the fntroductlon we will dfscuss alternatfve
methods of meetfng the time/speed constraint. We will
then discuss the nature of the problem we are
to solve in more detail. We will

trytng
then d 1 scusa the

design constraints on the architecture. we will
follow thls with a descr lptfon of the
archftecture,

system
plus an example simulatfon. Particulars

of the unit architecture will then be dlscussed. We
will then discuss some product tfmfng data. This wlll
be followed by a section 0” how event dr fven
simulation relates to data flow.

2.0 Prevtous Solutions

Many approaches have been taken to increase logic
sfmulatlon speed and capacity. Perhaps the s fmplest
approach it the assembly language coding of the ttme
crftfcal parts of the algorithm. Unfortunately, even
coupled with tricks such as 1 oop unroll Ing, data
structure reorganfzatfon, vectorfzatlon and branch
reductfon, this approach seldom gives more than a 3x
speedupCKrohn611.

With the availabfllty of a hlgher performance
microprocessor to execute the simulator engine, a
further speed enhancement can be realized. For
example, an e Mhr, 286 based “background” processor
wfth high apegd memorv could perform 2-3 times aa

fast as b simulator running on b workstatton. this
bprrdup ib real lzed prlmartly by running the
processor wtth faster memory. Cutttng the number of
watt atatbs In a 286 archltectur. from 3 to 0 could
result In . 2.5x speedup 4. Coupled with
language, thts could g!ve a 6-9x speedup.

assembly

Another aoorqach is to devslo~ SPOC ial hardware
that Is exscti’y tailored to th;e pgoblem. Pf tster
CPftrter821 reports on IIIM’s WE machine whtch.
althouih not event drtven. provtdba thb fastest raw
bvaluatton spbbd of any exfstfng stmulator. It can
contain up to 4 ml 11 ion gates and cAn evaluate 960
mtlllon gates/see. Sssakf CSasak1833 rtports on NEC’s
HAL which is an IBM class machtnb that Is event
drtvbn. It can contain up to 3 mtllton gatbs and can
bV8fUAtb 360 mllllon gatbs/sbC. Thbrb arb othbr paper
dbsfgns which capltalit. on most of the parallelfsm
tnhorent In thb bVbnt drlvbn sf~nulstfon~ algor lthm
IAbramoviclB31. tGlazlbr841.

for
Although Spbclal Hardware dbvbloped bxclusfvbly

sfmulatfon PrOV tdbS l:hb SrbStbSt

tncrease, it ts USUA??y dlfflcult ‘to
performa:;;

modify In
field and cannot bb used for anvthlna else. On the
Othbr hand, mlcroprocbssor basea s.ysEbms do not hAvb

the necessary power.
In this paper wb wfll present A SpbCfAl PUi-POSb

AttAchbd thb Mbga?OglCfan. whfch Is
bspOCiA1 ly

prziffsor ,
su itbd for running evsnt driven

slmulatlon algorithms. although It is not limited to
running only algorlthms of thfs type. In addftfon.

due to tts microcoded nature, it provldbs a
balrncb of flbxlbtlfty and raw power.

good

3.0 The Nature of the Problem

In order to understand the
functlonaltty constraints, we will

megaloglcfan’s
briefly review

aspects of the probltm that It solves.

3.1 Overview of Modeling Levels

Simulators model a cfrcutt’s behavlour at various
?OVbls of abstraction(Tab1. I).
The user expresses the detafls of hfs circutt at

any of thesb levels, or wlth a mfxture of
abstractlons, each at a different level. These levels
range from the Analog ltvel. where a node’s stat. is
modeled ustng real numbers (whfch represent currents
and voltages), to the system lev’bl. wherb A nodb’s
StAtS tS modeled ualng boolean values (whtch
represent boolean valuer). In modbllng A partrcular
elreutt, modelfng accuracy increases AS one travels
down the tablb and slmulatfon spbbd fncrbssbs as one
trAV.ls UP. Each modblfng 1evelE~:;ttngulshes ftSblf
by tts languago of dlacaurse. language has s
typb of dAtA wfth which It dbAlS. .a mbdlum In which
it ts expressed. d set of prlmftlve expressions as II

basts, a means of combfnlng the prtmttlve l xprosslons
Into complex expressfons. and a mbana of

~w8y from tht complextty so that
abstracting

seems ttself to be a prlmttfve
the abs;:ac;;T;

exprbsslon.
now brlsfly dtscuss Data Types and the dtfferent
charactertstlcs of the various modeltng levels.

3.2 Data Types

At thb Bbhavforal Lbvel. a node’s state could bo
rbprbsbntbd Using two valued logfc. Howbver, an extra
statb, “unknown” is useful for
oecurlng at power-on,

rbprasentfng cases
where An fntbrnbi circuit node

is bithbr logtc 1 or 0, but tt cannot be dbtermlnbd
which.

At 1OWbr 1bVblS Of Abstractton, It 18 tmportant
to simulate trlstatb and open COllOCtOr gAtes. which
CrbAtb illlpltcft “wlrbd-or”
In order to simulate

gatbs k$;:,wL;bd togbthar.
VAr tous * sttuatfons

accurAtbly,
“strength”.

It is useful to Introducb the conebpt of
Strength Is usbd to sfgnlfy the drlvlng

capabllty of thb node. If thb node is Acttvbly drfvbn
t0 Its CUrrbnt lbVb1, the strength is safd to be
forcing. If thb nodb Is pulled high or low to its
current lbvbl through a reslstor,
said to bb reslstivb.

the strength IS
If the nodb Is hfgh or low dub

to the prbsbncb or absence of a
thb strength Is said to

capacfttvo
be high llilpbdbnc..

chargo,
If a

nods’s strength 1s lndetbrminatb. It. 1s ssid to be
unknown. A tablb Illustratfng all
lbvbl/strbngth combinatfons Is shown bblow.

possible

strength
, +----+----+----+

VI 01 1 t u I<-lbVO1
+--+----+----+----+

IF I FB 1 Fl I FU I
+--+----+----+----+
IR I RB I Rl I RU I
+--+----+----+----+
Ii! I 20 I Zl t zu I
+--+----+----+----+
IV I UB I Ul t uu I
+--+----+-----+----+

The example below shows b CASb where
these strength lOVb1 comblnatlons

InAny of
arb used. The

clrcult consists of two unidirectional transfer gatbs
whfch drive s common invertor. Inftlally, the
inverter’s Input 1s drfven to sn RI
gate. Next, the upper gate switches

t;f th:ndupper
the

Invertor’s input becomes Zl. (If lbft In ihis stAtb
for a long enough period of tlm., the node wfll docay
to a 20.) Flnally, the upper gate switches to an
unknown stat.. If thls state 1s “on’, then the
Invertor’s input should be Rl. If ft is ‘Off” then
the lnverter’s input should still be Zl. Although we
cannot determine what strength the node wlll be, we

Table I. The Relationship Between Multiple Modeling Levels

Data
Level Type Medtum

IBehavioral t2.12 Itextual
I I state I
I
IFunctfonal~ 12

I
Itextual

I t statb t
I)
I Gate I 12 Igraphfc
t lstattl
t I I
tSwitch
I

[;:“;;[grAphfc

.
IAnalog Icontinuous

T “Behavfoural” I Through syntax lProcedure.lCPU.ALUI
I (Notel).“Gat.‘l Olr=--11112; I Function l(8086) I

Prlmttlve Means of Ueans of PMX
Expresstons Combtnatlon Abstrsctlon Model

I I) I
*Gate’ I Through syntax IMacro fC0unt.r I

IOl=(Not Il)Or 12;t(Note3) t(74161)l
I t I I

‘GAtb” lThrough graphtcalI*Blocks- I Nand I
(Sbb Note 2) , connbction I 1 Not.41 t1740n116) I

I I) I
BfdfrbCtfOnAl IThrough graphtcall”BIocks. I

TrAnslStOr connbctfon I I,4K, I
.

t I I I

Note 1
Bbhavioural bxprbssions incfuder Arlthmetlcal. Shift. Bit Reduction, Logleal
and RblatiOnAl operators AS wbll as Condltlonal. looping, sbquentfal. and
parallbl control constructs.

Note 2
Gate types fncludb Input, Output, Delay, Loglc(such as nand,nor), Trlstste,
UnldlrectlonAI, Ram, Rorn, Pla. Latch, Flip-Flop, PMX. Setup-and-hold-chbck,
Slgnal~rrlatlonship~chbck and Mlnlmumgulse~wldth~check.

Note 3
Macros cannot be combfnbd at the functlonal level.

Note 4
Blocks are graphtcal “black boxes’
Interfaces.

wlth graphically dbflned bus and slgnal
Their contents can be examined by descendtng into them.

I18

do know that the 15~01 will be 1. This mean5 that we
must model the state a5 being Ul.

3.4 Physical Modeling

Sometimes it is not possible to create an
;;;irate mot=cftz; a circuit In a reasonable period of

what level of abstraction
Mfcr~pr~~essor modeling 1:“: good example of thf5. 1;
these ca5e5, the best model of the part is the part
itself. The mcgalogician has a physical model fng
extension (PMXI which allow5 the User to logfcally
model chip by
m5galogi~fanCStoll*B3.

plugging fnto
Thfr method o:t modeling

the
cuts

across all levels of abstraction, as shown in Table
I.

4.0 Megalogician Architectural Conatrafnts

It was requlrsd that the megalogfcfanTrh~~port a11
the functionality descrfbed above. meant
supporting the interpretation of register machfne
code at the behavioral level, of stack machine code

LLUSTRATION OF IP STfiTE l’fODELIH6

.
h:

At even lower levels of abstraction, 12 state
modeling is not accurate enough. Switch level
sfmulatlon use5 100’5 of values to model the state of
wire5 attached to bidfractional transfer gates.

Though they differ in the number of states
have. all

they
levels above the analog level can be

desc~ib~~,~~,modelfng state using discrete values.
This simulators to perform

table
primltfva

evaluation at these levels using lookup. The
magalogfcfan is optimlzed for this type of pr imitfve
evaluation. It currently doe5 not do any type of
modeling at the analog level.

3.3 Differences Between the Modeling Levels

At the gate and swftch level, the cfrcuit fs
expressed graphically. as shown in the figure above.
Internally, the simulator represents the cfrcuft at
both these levels a5 a graph, where the nodes
represent the prfmftfv55, and the arcs represent the
wires between them. Again, the difference between
these two levels is how state is modeled.

At the functional level, higher order
are modeled a5 a boolean combination of

pr imit;;::
gate5,

boolean combination fs scheduled and evaluated as
though it were a single gate. For example, an
exclusfve OR (Named XORI with Delay N would be
textually expressed a5

XOR:EXPR<outputsrolCNl: fnputs:f1.12>;
(015nandinandfil,not i2l,nandff2,not ilII1;

where the delay for the entire operation is 1 umped
into some single ualue N. This sequence of operatfons
is dsscribsd as a single exprestfon. Whenever the
simulator schedules this XOR function, the entire
expression is evaluated at once. rather than a5
number of indfvfdual events. This same function could
have bsen defined at the gate level, wfth the
difference that It would result in individual event
scheduling for each of its prfmftive elements.
Internally, the simulator represents function5 as
5tack machine code. similar to Pascal pcode. Agafn.
the difference between the gate and functional level
is the medium with which the concepts are expressed,
and the fact that functional modeling allOws coarser
evaluation.

The behavioral level allow5 the USOT to create
even more abstract descriptions of circuft elements
ustng 5tandard structured expressions such a5 IF THEN
ELSE. It also allows the u55r to deal explfcftly with
ii;; and event scheduling in his modeling. Constructs

a5 WHEN allow the user to sensitize an
abstraction’s inputs. So a designer may initiate a
tequence of action5 based on an
WHEN CLOCK -> 1. Internally,

expression such as

behavior5 as reg f ster
the sfmulator represent5

machine code.
difference between

the
the functional

Again

level 15 that the user deals with a hfgher
abstraction.

and b;tt:;oral
of

at the functional level and
flow) OraDh¶ at the aate and

da;:,,~;Pey~;;;; (;;;;

requirzd that the a;chitecturs be very flexible.
Other requirements were that the archftecture be able
to support deslgns in the range of 1 million gatea,
and be able to run them 100X faster than standard
software simulators.

was
I~,~t-~-; to meet the fl:Fl;;Jlity constraint,

that the had to to Lk
microcodeable. In order to meet the 5peed constraint,
it was realiztd that a single procersor archftecture
would not be fast enough. The question wa5 then how
to best partition the problem in order to parallelfze
it. Th5re are two basfc method5 of parallelfafng an
algorfthm. One is by data psrtitionfng. The other 15
functional partitlonfng.

Data partitioning involves making sevora 1
processors perform identical functions on different
portions of the fnput data. Thf5 approach was
rejected because it required complex fnterproce55or
communication, and expensive proce5sors.

Instead it was decided to e;Tl;ft the structure
of the 5imulation algorithm functional
partftfoning). It it porsfble to’ byttk down the
algorithm into three pieces of approximately equal
complexity. Each piece utllfzes la;& data 5tFuctures
which it does not have to share with the other
pf*C*S. In addition the communlcatlon between the
pieces Is low bandwfdth and simple compared to the
data partitioning approach. We will now d f scus5 the
particulars of the Implementatfon.

5.0 The System Level Archftecture

The system level architecture of the Hegalogfcfan
is dtagrammed below.

. ..*..............
;286 based workstation

a.-----& d-----L +-----+ +-----+ +-----+ .
; i isys. i ic2fsk l ivideo; ley- i 1
1802861 IMem. I I I lboardl .
I I I I I I I I I I .
+---*-+ l ---*-+ +---#-+ +---,-* +---,-+ ,

+ li .
#Multi- 5 BU¶ I t I .

##+##x#~*#######u####u##*########+#####~.
. +.......+.......+ ..,..................
.Accelerator +-5---+ # x

IE+al2t + +
+-----+ +--a--+, + +--+--+ +-----+

. IEvalll-

. IMem. I
+---em+

I II Ii I I I I
lEvalII----f--->IOueuel=iOueuel

.

IUnit I I IUnit I IHem. I .
& ---mm+ + +-e-e- + +-----+

I 1 I
I +--a--+ I +--w-s+ .
I I I I I I .
+<---IStatel<---+ I State I

IlJnlt I=====----1Wem. I
+---em+ +-----+

. ..*.*+ .,...”

A high
workstatfon

performance 80286 based
5erve5 a5 the nucleus en::neerfng the _ . ._ . .

MsgaLog7cfan, and is used for 5cnsmat i c prapararron
and compflatfon, and also supports the u5er interface
during simulation. Thls system 15 interfaced to the
special accelerator hardware via the workstation’5
Multibus.

119

The accelerator consfsts of four separate
processing “nits. called the Queue, State, Eval-1 and
Eval-2 “nits.

These four units are physically separate, I.e.
each occupies a separate PC board-

The best wav to understand the total architecture
Is to view the &eue, State and Evaluatfon units as
being coroutines, communicatfng with each other
through high speed fffo channels. Their memory spaces
are disjoint. They can only communicate through the
f IfOS. This fifo form Of communfcatIon places
restrictions on the efficiency of parallel processing
among the units, since It makes It dfff fcult for
communicatfon to occur among certain paths. For
example, the SU can not conveniently query the OU for
data. Rather, It Is the responslbllfty of the QU to
provide the SU with all the data It needs to process
a particular command. The 1ogIc slmulatfon algorithm
we execute, however, lends Itself to this approach.
This otherswproach offers performance advantages OVII-

. A completely shared memory would el Imfnate
the advantage of parallel processors, since all would
become memory access limited. (This point has been
brought up concerning hardware accslcratIon of
certain AI paradigms such as Blackboard and
Productton systems.tDeeringB51 These systems, In
their current forms. rely on memory for communIcatIon

between tasks.) The fIfo itself improves performance
bv smooth lnq
“jnstantaneous’

out lrrequlsritlas in
speeds of the inIts (their

the
“average”

speeds must still be balanced). The lack
back-and-forth communication allows one unit to 2
performing tasks which ar* unrelated to what is
occur lng in the other “nits.
partltloning the tasks

BY correct1 v
and data, conm~nIcation 1;

minimtzed. In actual operation, al 1 un Its process
simultaneously, each recfsvfng packets from behind.
processing them and passing the results forward. Each
“nit handles a number of tasks associated with the
contents of memory it contains.

5.1 The Queue Unit

The main data structure of the Queue unit 1s the
event queue. which contains all output transitions
whfch are scheduled to occur in the future as a
result of current or past input transttions. The
event queue is structured as a linked list of events.
Associdted wtth each event Is:
1) a gate idcntif Ier
2) the simulation time at which the event is to
occur, and
3) the new stateTrscal1 that state Is defined as
being a level/strength pair).
Routines exist which allow the quaue unit to access
the event queue by either time or gate Identifier.

The queue “nit’s primary responsibility is to
begin and halt the simulation. Once the circuit data
has been loaded into the var ‘lous units, actual
simulation begins when the 80286 instructs the Queue
Unit to simulate the circuit for a certain amount of
simulation time. The Oueuc Unit begins to “run” bv
incrementing time, and procenJIng the eventj
scheduled for that time.

5.2 The State Unit

These events are passed to the state unit, which
enters them Into a state array. The state array
records the state at the current time step for all
nodes In the circuit.

The state unit also contains the connectivity
Information for each element in the circuit. The
connectlvlty Is maintained in two 1 ists, each 1 ist
accessable via a gate ldentlfler. The first 1tst IS
called the fanin list, and 1 ists al 1 the gate
identifiers that fanin to the gfv;;dnode. The second
list is called the fanout II&, 1 ists a11 the
gate identifiers that fanout from the given node.

After the state “nit has updated the state arrav
for the particular time tick, ‘the OWN.3 unit ags in
sends the events for that time tick to the state
unit. For each of the events sent, the stats unit
dIscovcrs where the event fans out using the fanout
1 tst. For each of these gates, the state “nit bundles
together the gate IdcntIfIer, gate type and the
node’s input states (usina the fanfn list and the
state array) and sends them to the evaluation unit.

AS can be seen, the state unit’s pr Imary
responsIbIlIties are to: enter current stats
transItIons into the state array. find all gates
which need to be evaluated and their Input

and their inputs
states.

and to send these gates to the
evaluation “nits.

5.3 The Eva1 Units

The Eval-1 unit contains the functional mode I s
plus the behaviors for all slmulatlon element types.
The Eva1 Unit uses the behavior along with the list
of input states to evaluate the correct output for
the gate. It compares the evaluated output to the
current output. If they differ, It passes thr gate
Idrntiffer and new outout to the Queue Unit for
scheduling. If the outputs are the same, itTh;as the
Oueue Unit check for a spIko on the node. OUOUO
Unit contains the rise and fall delays for each gate.
It schedules an event by accessing
delay value, adding it to the

cur;;;t l Pproprf=to
time. and

entering a new event at the appropriate place In the
event queue. It checks for a spike by seeing if
event is currently scheduled for that gate.

any

As can be seen. the prImarY responsIbIlf+fer of
the Eva11 unit are. to: .evslu&te g&es which have
experienced an input transition and request an ovrnt
to be scheduled If necessary. Eval-2 Is used for the
physical modeling of circuits.

By using this algorithm on a large cIrcult where
it is 1 Ikelv that there are many ovrnts In .
particular time “tick”, It Is possible to have all
three processors performing useful work most of the
time. The State Unit is collactlng fan-in states,
while the Evaluation Unit evaluates outputs and the
Oueue Unit schedules future events.

5.4 An Example Circuit

FIgurs I below illustrates a typical cIrcuft.
Figure II Illustrates how the tables would be set up
in the various units for this particular circuit.

The State Unit contains the state array and the
Fantn and Fanout lists. Note that “A” and “B’ have no
fanin and that the fanout of “H’ is not shown. ‘A’
fans out to “C” and “0’. in the example. we have
consistently stripped off the strength part of the
state representation. “A” has a stat; of,:ogIc 1 at
the current time, which is 99 ns. ’ the only
node to have a state of 0.

The delays for the various gates are kept in the
queue unit. “C”, ‘D”, ‘E” and ‘G” have delays of 10,
15. 12 and 18 ns respectively.
&::I;; a single event, .whIch

The event pool

Indicates that the
“A” chanscs to loafc 0 at time 100 ns.

The eval Wli: simply- contains the behavioral
description of the var fous nodes.

Figure III illustrates the state updatoHt;=so of
the simulation algorithm at time 100 ns.
state unit updates the state of node “A” wh& %
receives the appropriate Queue Unit packet.

Ffaure IV illustrates the second phase of the
algoriEhm at time 100 ns. 1) shows where
identifier portion of an event is propagated th* YE to
state unit. The state unit responds by propagating
out instruction packets to be evaluated. 2) and 3).
One packet is sent for each node to which ‘A’ fans
out (namely “C” and “0”). The oval unit evaluates the
packets ands posts the results, 4) and !I), to the
queue unit. Flnally. the queue “nit takes the results

and dIscavers when to enqueue them by looking at its
delay table. This happens In 6) and 7).

All these events occur sImultsncously. that Is
whllc the Queue unit is processing events, the Stat0
unit Is building Instruction packets and the Eva1
unit is evaluating them.

The balancing of work among various units Is
based on somytas;;mptlons about the cfrcult bofng
simulated. optlmlzed for simple gate and
boolean evaluation. assumlng an average f8n-out of
2.5. This means that there are 2.5 ovsluatfons for
each scheduling. For every 100 clocks It takes to
collect the fan-ins of the 2.5 gates affected by a
state update, It takes 40 clocks to ovalusto the
output of each gate, and about 70 clocks to schedule
an event and 15 to check for a spike.

Figure I: Circuit to be simulatod

I20

Flguro II: Inltlal MogaLog7clan Conftguratfon

“and” model
‘nand’ model t-i

I
/‘\J \

Eva1 unft
+-+-+

tt
\ 1U8 ->IAld’

\ +-+-+
I \ event

t-it
t \

v-1
pool

State unlt I ,<““““““““““““““, I Quouo unit
Lt 1-1

Connectfvlty stat.
Tsbl. Array

Delay
Tablr

“““““““+“““““+“““““++““““““~““+ “““““““+““--“+

Gate I Fan I Fan II state I Cat.
I 1” I out Il(tlme 9911 PYI

“““““““+“““““+“““““++---------* “““““““*-----+
A t x I C,D I’ 1 A 1x1
B I ICEll 1 I 5
C I AXB I D’E I I 0

F
I A:C I i; II 1 I

C I I;2 I

IB,CI G II
:

I i
I 15 I
I12 I

G I D,E I H II G I 18 I
H I G.. t . . . II . . . ! H I . . . I

IT denotes logic 1. F denotes logic #I

Figurr III: Stat. Updatr phas.

stat. ‘and’ mod.1
Array “nand’ mod.1 1-1

“““““““+“““““““““+ I oval
Gate

wml, !E%I *
/IlJ \

unft

t \
“““““““*“““““““““* I \

A

E
0
i
c
H

i ->0 i
: I
:

I
I

1
. . . I

t. ‘\

t-d
\
\t-\ I<““““““““““““““I

1-1 +---+---+ ,-/I
state <- I A I # I quouo
unit +---+---+ unit

stat. upd8te
pmekrt

Ftgure IV: Event Propagation phase

ev. 1
+-““-+-+-+-+ unlt /-\ +-+-+

2) InandlCI0Ill I 5) IDIll
+-““-+-+-+-+ A-t \ +-+-+
+--r-+-+-+-+

3) InandlDl0l0l t’
\ +-+-+

\ 4) IClll
+----+-+-+-+ / \ +-+-+

t \
Instructlonlt-\t v-1
packets I(““““““-“------, I 6)

i-1 +---+ Lt
state state <- I A I
Array unit +---+ ix

““““•+“----+ 1) went 7)
GatelSt8t.I packet
““““+“-I--+

:I: I
(time - IN)

c I H
D I 1 I

:I: 1
H I... I

+-+-+
Ill->lxlxl

I +-+-+
I

Ar->t,;;t

I
+-+-+

” ”
,:,-,;,;I;

+-+-•

6.0 The Untt Archltacturo

The Guru., State and Eva11 unttt are pfprl fnad
mtcrocodable machlnea.

A block dfagran for the proca*sor card appears
below, It consists of mfcrocode storage. a microcode
addressing mechanfrm. a register file. an ALU, a fffo
buffer, a memory Interface, a aultlbus Interface, and
a host of associated control logic.

UNIT BLOCK DIMRRR

IICROCODE ADDRESS 14
aND JUMP LUSIC

“I”;~;“’

<ILK X 36)
\

INSTRUCTION

TO

Once the unit is runnfng, the lnput port (fn the
multibus fntarfacel ts used to pass fn commands and
data. Like In most processors, command ts
dtstfngulshad from data only tn the mtnner In whfch
It Is qnterprated. The processor Is designed to
appear to execute hlgher level commands than single
mfcroinstructfons. A “command’ In thfs sens* Is a
sequence of mlcrotnstructtons whfch perform
speefflc task. Within the slmulatlon algorithm, thesz
tasks can be such things as ‘sehedulo an event. or
‘eualuate a two-Input NAND gate”. A command Is gfven
to a “nit through fts flfo, or through the i “put
port. This command Is actually the startlng microcode
address of the sequenca of mlcrolnstructlons to be
executed. Upon completion of the command. a “eW
command Is loaded. Thts Is accomplfshethF a rpeclal
m*crolnstruction which perf arms
function In hardware: 1) If the tnput port

y;;;;s

transfer control to the address It contains. else 2;
!f the input fffo (s not empty, take the next word
from the fife and transfer control to the address it
contains, else 3) wait for condttton 1 or condftfon 2
to occur. A command is lfkaly to contain data. Thls
data also comas from the flfo or Input port. Each
command must explfcltly or fmpltcftly specify the
number of words of data to follow.

The ALU hardware Is used matnly for dacrementfng
loop counters and dolng bit masking operatlons.

The machlne used by each untt supports a fafrly
standard set of mfcrocode operations. It dfffers from
standard mtcrocoda machines In three ways. The f Irst
dtffarenca is that It has specfal prlmltlves which
allow structured accass to tts data on a mlcrocoda
level. Thfs allows for compact coherent coding of
symbolic algortthms. The second dffference 1s that It
contains lnstructlons tal lored to the slmulatlon
algorithm requirements, such as special bft test and
address calculation instructions. The third
dlfferance 1s that It contains a special set of
tnstructfons used for Interuntt communicatfon. These
flfo instructions support the high lntarunlt
communication bandwidth. They al low the units to
communfcate at reg tster .CCeSS speeds. This high

bandwidth is essential to support the algorithm. On the face of it. thla rlmulator example aeema a
The communlcatlon is done.through channels which

connect the units together. The channels conta In
FlFOs to buffer temporary load imbalances between the
unit.8.

Eva12 is the spcctal PMX processor. When Eva1 I
recieves a packet that it cannot process (such as one
that involves evaluating a physical chip, s;:;,;’ t..:
National 16000). it parses it to Eval2.
Eva12 can process simultaneously. That is, given the
appropriate mix of type El packets and type E2
packets, both processors can evaluate different nodes
of .a circuit graph at the same time.

7.0 Measurement Data

Our benchmarks have shown the megalogician to be
between 80 and 110 x as fast as our own software
simulator. This is approximately 100.000
evaluations/set or 40.800 events/set. Its
event/second rate is greater on circuits with large
oate counts than on ctrcuits with small gate counts.
s--- ~~~ ~~

This is due to the fact that larger circuits
genera~:~khav:n;or;h~;rallel activity going on per
time there 1s some
starting aid stopping a time tick. In

overhead ln
one case, a

35,000 gate design processed 50% more events/set than
a 250 gate design.

The maximum activity measured w~;c;~~;oxlmat:~l:
events/l000 gate time-ticks. This
circuits, larger circuits range from 1s” to 1
event/l000 gate time ticks. This means that event
driven simulation does at least 500x fewer
evaluations than a non-event driven approach would.

In terms of a real benchmark, a single card
computer design containing several PMX-modeled
devices Including an Intel 8086, 8089, 8288 and the
Zilog 280 SIO with a multibus card worth of sot tware
modeled MSl/SSl glue, ROM and RAM runs 1.3 msec of
real time (10,400 cycles of the 8 MHz clock, or about
1000 to 2000 8086 instruction executions) in 17
minutes.

8.0 Relation to Dataflow

Both logic simulators and dataflow machines are
interested in evaluating networks of aquatlons. In
the data flow case, the netw;;k ;;,:;ll;i a data flow
graph instead of a ;:;;V;;. understand
the relationship discrete slmulatlon and
dataf low, it is best to start with an example that
compares the two.

We will start by looklng at an example dataflow
graph and see how it is processed.

“6”A _ A - A -
\I \ \/ \ “3” \/ \
I‘. - ‘I\ I - I\ I - I\
I\-/ \

v-1
A-1 \ _ /i-i 1

“3”B B \/ \ B \/-\‘38”
“7”E--I + I-> “7”E--, + I-> E--l + I->

“4°C
v-1 I

/\-I c - i 1-i C
\i\ / v-1 /

ii-1

I * I/ I * I/ I l I/

A-1 /\-I “28” i 1-i

“5”D

(0)
Example I

D D

ib) (cl

All nodes in dataflow graphs ti;i; a call by value
semantics. This means that each processes Its
inputs only after all of them appear.
above calculates

The example
the expression 7+(A-B)+CC*D). In

(a). the ‘-‘I and “*’ nodes are free to f$e. but the
“+” “ode Is not. This is because the node has
only one Input, E. available. In lb), the .-’ and “**
nodes have fired, ao the ‘+* node is free to process
its inputs. It then does so, producing the results
shown in Cc).

Let’s now see how a” event driven simulator would
process the same graph. All nodes in event driven
graphs have event driven semantics. Thls means that
each node processes Its inputs when any of them
change. Let’s assume in ia> that inputs A,B,C and D
arrlvc at time 0. Let’s further assume that esch node
has a delay of 1. In (a). the “-* and ‘*’ nodes ore
free to fire, but the II + I node Is not. This is
because the “+” node has no inputs that have changed.
In (b), the ‘-’ and)‘*” nodes have fired, and after a
delay of 1. have arrived simultaneously at the lnput
of the “+” node. The *+” node will now process Its
inputs since they have changed. This gives the result
shown in fc).

1 ttt1e contrived. Ifi particular, It g1v.s the
impression that the *-I. “*)* and ‘+* nodoa fire onlv
when both inputs are present. This 1s not true 1;
general, rince event driven semantica tmply that
these nodes fire when any i “put changes. It se*ms
true due to tho conditions stated above, which wore
that:

I) Inputs arrived to thls functional block
simultaneously and

21 Delays ware added to the var four components to
align their processed results.

If we could somehow ensure that those conditions
were always met for all functional blocks, then a
dataflow graph evaluation would be indistlnguishablo
from an event drtven graph evaluation.

It can be shown that this can be dono for a largo
number of casesIPasemanB41.

The stmilarity between simulation and data flow
extends to the data structures and algorithmic
decomposition and a token
match 1 ng data

us;;‘,:n the MegaLogtctan
computer. To better we the

relationship, we have shown the MegaLogictan
architecture beside that of a.typical token- matching
dataflow computer LTreleaven821.

MegaLogician Architecture

+------*
IEvalZI --------

+-----+ +-----+I (events) +-----+ +-----+
I I I I I -------- I I I I
IEvallI-IEvalll---------------->lQueuel-IQueue
I Mom I IUnlt I IUnit I IMom I
+-----+ +--..--+ +-----+ +-----+

I
I +*----+ I
i I I
+<-------IState)<-------+

______------- IUnlt I m----m--
I instruction ; +-----+ (l vants 1
c packets I1 ___-----

+-w--m+
I
I state I
IMem I
+-----+

Data Flow packet communication with token matchlw

_______------
+-----+ (data tokens I +-----+
IProc. I ________ew--e IMetchl
,un,ts,------------------)IUnlt ,
IPl-Pnl I I
+-----+ +-----+

I I
I +-------+
I IFetch I I
+<-------IUpdatel<--------+

------------ IUnit I ___------

I executable 1 +--“W--+ (sots of)
iinstructlons) I I I- tokens 1

+-----+
IMem. I
IUnit I
IMl-Mnl
+-----+

The events passed from the queue untt to the stAt0
unit correspond closely to the sots of tokens passod
from the matching unit to the fetch/update unlt of a
dataflow machine. The time wheel in thethzueue unit
corresponds to the matching store In matching
untt, except that time is used .s a tag. The
instruction packets propagated from the state unit
ore identical to the packets paesrd from thr
fetch/update unit In a dataflow machine. And the
events psased from the evaluation unit are identical
to the data tokens passed from the processing un lts
of a dataflow machlne.

The points where they are not ldentlcal are that
a dataflow machine has no analog to the state .rr*y,
a data flow architecture usually has multiple st8t.o
units, and dataflow matching is done by both node and
lterstlon. The state array is an artifact of the
simulator’s implementation. It is the most off iciont
thing to do given the simulator’s event driven
sematics and the small number of pt--ce;;;ng untts. It
could be do;;,;way wi;;,:netir~;y components
were made by the Cm,. whore we
supported multiple state units, a dlstrlbutod state
array mtght cause the processor to br bottlenecked
through heavily used state units. However, since the
circular pipeline is currently well balanced, add i ng

122

extra state units buys us nothing anYwaY.
It ha3 been shownIPaseman843 that one can emulate

call by value semantics eastly in an event drlvsn
architecture by balancing the graph. In thts case,
t.~.eti;;dwh;~;eaut~;:t(csllY does matching by both

state array is then made

superfluous In the call by value case.

9.0 Conclusions:

We have stressed that raw speedup should not be the
only consfderatlon In developing an accelerator. In
particular, our goals were to balance speed with
flexfbllfty. We have shown how the relatfanshlp
between event driven simulation and dataflow can be
exploited in making a simulation accelerator.

Acknowledgements:

We would like to acknowledge the support of the other
people on the Megalogicfan implementation team: Ban
Lernar , Vered Ramon, Shan Shan Wang and Moshe Gray.

References:

tDeeringB51 Deer~ng, Michael ‘Hardware and
Software Architectures for Eiifcfent AI.’ in
Proceedings AAAI-84, 1984.

CKrohnBll Krohn, Howard E. ‘Vector Codlng Techniques
for High Speed Dfgltal Simulation.” Proceedings of
the 15th Design Automation Conference, June 1981.

tPflstarBZ1 Pf lster Gregory F. ‘The Yorktown
Simulation Engine: Introduction.’ Proceedings of the
19th Design Automation Conference, June 1982.

CAbramovicf831 Abramovfcl et al. “A Logic Simulation
Machine.” IEEE Transactlons on CAD of Integrated
Circuits and Systems, Vol.CAD-2, No.2. April 1983.

CSasakiB33 Sasakf et al. “Hal: A Block Level Hardware
Logic Simulator” Proceedings of the 20st Design
Automation Conference, June 1983.

CGlarierB43 Glazier et al. ‘Ultimate: A Hardware
Logic Simulation Engine,” Proceedings of the Zlst
Design Automation Conference, June 1984.

IPasemanB41 Paseman W.G. ‘Processing Data Flow Graphs
Event

%p~:atfon,
Dr lven Simulator.” Dafsy Systems

February 1984.

CStollBSl Stoll, Peter A. ‘PMX: A Hardware Solution
to the VLSI Model Availability Problem” Proceedtngs:
ICCD ‘85 IEEE International Conference on Computer
Design: VLSI in Computers, October 1985.

tTreleavenB21 Treleaven P.C. et al. ‘Data Drlven and
Demand Driven Computer Architecture” Computing
Surveys, Vo1.14. No.1, March 1982. ~114

123

