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Abstract
Current digital 1logfic simulators running on
engineeoring workstations lack capacity and speed.
This paper discusses a hardware accelerator for a

workstation simulator which addresses these problems.

The accelsrator runs 19%x faster than {ts software
counterpart and can sfmulate up to 1 wmilifon gates.
The accelerator has been buflt and s being sold

commercially. The architecture of the accelerator Is
sim{lar to that of a classical datafiow machine. Ve
describe the architecture of the machine and

f1lustrate how it would simulate a simple circult. We

then briefly discuss the relatiénship between event
driven simulation and dataflow.
1.9 Introduction
Logic Simulation capability 1s one of the key
selection criteria for peocple evaluating

workstations. Workstation based simulators provide a
number of advantages over simulation alternatives on
other machines., They run on the desfgn englineer’'s
stand alone station, providing results quickly
without competing for mainframe resources, They
usually exceed the modeling capabilities of most home
grown simulators(12 state modeling, MOS,
Bifdirectionals, Functional modeling!}. They are
integrated with the schemattc capture facility, so
that with a smal)l number of steps, the user 1s able
to go from schematic editing to simulation. However,
there are +two Important areas of concern where
workstatfon sfimulators fall short. This paper
describes a product, the Daisy Megalogiclian, which
addresses these areas.

1.1 Capacity

circulits

can be
workstation.

The first 1s capacity. Usually, only
with a few thousand simple elements
successfully run on an engineering
Simulators with this stize 1imitation are useful for
checking out pieces of a design, but they are only
capable of completely simulating the smallest of IC
and board designs. This problem can be partially
overcome by adding axtra memory to the system. This
approach will allow users to perform simulations
most large ICs and small systems. Desfigns f{n this
range include 16-bit VLSI microprocessors which are
fn the 18-15K gate range, and a +typfcal Multibus
board with 158 TTL MSI IC’s, which might require 2-3K
primitives to describe.

However, there is a growing class
require the capabflity to simulate
gates. Typically, these users are developing large
computer systems. One can argue that behavioral
models can be used to represent all of the blocks 1{n
the design which are not being immediately debugged,
with a simulation vector “"capture/compare® facility
to verify consistency between the behavioral and gate
level descriptions. However, even users who accept
this method for debug-level simulations express a
desire to run the complete system at the gate level
at Jeast once prior to commitment to physical
fmplementation.

of users who

188k or more
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Also, when one studies the growth of the size of
typtcal IC and system level desfgns, one realizes
that many engineers will be developing circufts fn
the 109k - 58Pk gate range In a few years. These
engineers will also wish to simulate at the gate
level at least some of the time. Therefore the class
of users which require 199k gate simulations will
grow as well.

1.2 Performance

The second major concern s performance. When
workstations are stocked with enocugh memory to
completely solve all size problems, then simulation
speed becomes a problem. Simulation speed {s measured
by how much real time elapses from the specification
of the required simulation until results are
presented in an analyzable format. Since logic design
and debug 1s an fterative process, a fafr measurement
is found by seeing how long ft takes to make a small
change in a circuit, recompile and resimulate. For a
18K gate design the time breakdown might be 1 hour
for compilation and 1 hour for sftmulation. However,
for a 64K gate design, the time might be 6 hours for
compilation and 1 day to simulate a test case. A
whole set of diagnostics might take six monthes to
simulate on such a design. Obviously, the engineer
would have to be content with a piece by piece
simulation, and perhaps a sampling of test patterns
running on the complete system. He might bufid a
breadboard version of the design to perform logfc and
timing checks that aren’t possible on his simulator
simply because 1t is too siow. Fault simulation Iis
another area where simulation time s a limitation.
Even for concurrent simulators, medium cifrcuits
require several hours to grade and medium large
circufts must run overnight. Again, the job is hardly
interactive.

Clearly, providing a
simulator allows:

(1} a speedup of 2-18 tn the 1logic debug
cycle for large and very large designs,
(2) the capability of making fault simulation
faster, and

(3) the capabflity of moving system level
and diagnostic development from breadboards
engineer’'s desktop.

This paper is organized 1into 9 main sections.
After the introductfon we will discuss alternatfve
methods of meeting the time/speed constratint. Wa will
then discuss the nature of the probliem we are trying
to solve in more detajl. We will then discuss the
desfign constraints on the architecture. VWe will
follow this with a description of the system
architecture, plus an example simulation. Particulars

significantly faster

iteratfon
much

debugging
to the

of the unit architecture will then be discussed. We
will then discuss some product timing data. This will
be followed by a section on how event dr fven

simulation relates to data flow.

2.8 Previous Solutions

Many approaches have been taken to fncrease logic
stmulation speed and capacity. Perhaps the simplest

approach is the assembily language coding of the time
critical parts of the algorithm. Unfortunately, even
coupled with tricks such as 1loop unrolling, data

structure reorganization, vectorization and branch

reduction, this approach seldom gfves more than a 3x
speedup[Krohn811.

With the availabflity of a higher performance
microprocessor to execute the simulator engine, a
further speed enhancement c¢an be realfzed. For
example, an 8 Mhz, 286 based ‘"background®™ processor
with high speed memorv could perform 2-3 times as



fast as a simulator running on a workstation. This
speedup s realized primartly by running the
processor with faster memory. Cutting the number of
wait states Iin a 286 archi{tecture from 3 to # could
result in a 2.5x speedup. Coupled with assembly
language, this could give a 6-9x speedup.

Another apprnach 1s to develop spectal hardware
that is exactly tatlored +to the problem. Pfister
[Pfister82]1 reports on IBM’s YSE machine which,
although not event driven, provides the fastest raw
evaluation speed of any existing simulator. It can
contatn up to 4 million gates and can evaluate 968
militon gates/sec. Sasaki [Sasaki83] reports on NEC'’s
HAL which {s an IBM <class machine that 1Is event
driven., It can contalin up to 3 million gates and can
evaluate 369 million gates/sec. Thare are other paper
designs which capitalize on most of the parallalism
inherent in tha avent drfiven simulation algorithm
[Abramovici83], [GlazierB841.

Although Special Hardware devaloped exclusively
for simulatfon provides the greatest performance
increase, it is usually difficult to modify In the
field and cannot be used for anything else. 0On the
other hand, microprocessor based systems do not have
the necessary power.

In this paper we will present a special purpose
attached processor, the Megalogician, which is
especially well suited for running event driven
stmulation algorfithms, although 1t 1s not limited +to
running only algorithms of this type. 1In addition,

due to {ts microcoded nature, it provides a good
balance of flexibility and raw power.
3.8 The Nature of the Probilem

In order to understand the
functionalfty constraints, we will
aspacts of the problem that tt solves.

megalogiclian’s
briefly review

3.1 Overview of Modeling Levels

Simulators model a circutt’'s behaviour a2t various
levels of abstraction{Table I).
The user expresses the details of his circult at
any of these levels, or with a mixture of
abstractions, each at a different Tevel. These levels
range from the Analog level, where a node's state 1s
modeled using real numbers (which represent currents
and voltages), to the system level, where a node's
state s modeled using boolean values {which
represent boolean values). In modeling a partfcular
¢irecutt, modeling accuracy i{ncreasss as one travels
down the table and simulation speed increases as one
travels up. Each modeliing lavel distinguishes {tsalf
by fts language of discourse. Each 1language has a
type of data with which 1t deals, a medium fn which
it is expressed, a set of primfitive expressions as =a

basis, a means of combining the primitive expressions
ifnto complex expressions, and a means of abstracting
away from the complexity so that the abstraction
seems {tself to be a primitive expression. We will
now briefly discuss Data Types and the different
characteristics of the vartious modeling levels.

3.2 Data Types

At the Behavioral Level, a node's state could be
represented using two valued logic. However, an extra
state, "unknown" {s useful for representing cases
occuring at power-on, where an internal circuit node
is e;ther Togic 1 or &, but 1t cannot be determined
which,

At lower levels of abstraction, 1t (s fimportant
to simulate tristate and open collector gates, which
create impifcit "wired-or" gates when wired together.
In order to simulats varfous wired-or situations
accurately, 1t is useful to Introduce the concept of
"strength". Strength is used to signify the driving
capabilty of the node. !f the node is actively driven
to 1ts current level, the strength s saftd to be
forcing. If the node 1s pulied high or 1low ¢to Its
current level through a resfistor, the strength 1is
said to be resistive. If the node Is high or low due
to the presence or absence of a capacitive chargs,
the strength f1s said to be high Iimpedence. If a
node's strength 1s indeterminate, it is salid to be

unknown. A table f1lustrating all possible
level/strangth combinations fs shown below.
strength
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The example below shows a case where many of
these strength Jlevel combinations are used. The
circuit consists of two unidirectional transfer gates
which drive a common inverter. Inttially, the
fnverter’'s input 1s driven to an R1 by the upper
gate. Next, the upper gate switches off, and the
fnverter’'s input becomes Z1. (If left In this state
for a long enough period of time, the node will dacay
to a ZU.) Finally, the upper gate switches to an
unknown state. If this state 1s "on", then the
fnverter’s input should be R1. If 1t s "off" then
the inverter's fnput should st11! be Z1. Although we
cannot determine what strength the node wili be, we

Table I. The Relationship Between Multiple Modeling Levels

Data Primitive
Expressions

Leve!l Type Medium

Means of PMX
Abstractfon Model

Means of
Combination

IBehavioralli2,12 ltextuall"Behavioural®
| {Notel)},"Gate" |

Istatel
I | |
Functionall 12 {textuali*Gate”
Istatel |
I I |
Gate I 12 Igraphicl”"Gate”
|state!

I1Switch
1

| {ses Note 2)
|

| |
1188 " lgraphic!|Bidirectional
Istatel | Transfistor

IProcedure, ICPY,ALU
IFunction :(8585)
1

Through syntax
Ol:=~rI1112;

IAnalog lcontinuous 1

|

|

|

Through syntax (Macro {Counteri
101={Not I1)0r 12;i{{Note3) :(74161)I
I |

|Through graphicali®"Blocks™ | Nand |
connection | {Noted)} 1(7480) |

| I |

| Through graphicall"Blocks"™ I Mux |
connect fon | 1(4816) |

-

1

Note 1

Behavioural expressions finciude: Arithmetical, Shift, Bft Reduction, Logical
and Relational operators as well as Conditional, looping, sequential, and

parallel control constructs.

Note 2

Gate types fnclude Input, Output, Delay,

Unidirectional, Ram, Rom, Pla, Latch,

Logfc{such as nand,nor), Tristate,
F1ip-Fiop, PMX, Setup_and_hold_check,

Signal_relattonship_check and Minimum_pulse_width_check.

Note 3

Macros cannot be combined at the functional leavel.

Note 4

Blocks are graphical "black boxes” with graphically defined bus and signal

interfaces.

Their contents can be examined by descending into them.



do know that the level will be 1.
must model the state as baetng Ul.

This means that we
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At even Tower levels of abstraction, 112 state
modeling 1Is not accurate enocugh. Switch level
simulation uses 198°'s of values to model the state of
wires attached to bidirecttional transfer gates.

Though they differ In the number of states they
have, 211 1levels =sbove <the analog level can be
described as modeling state using discrete values.
This allows simulators to perform primitive
eavaluation at these levels using table Jlookup. The
megalogician 1s optimized for this type of primitive
evaluation. It currently does not do any type of
modeling at the analog level.

k__fu
e

3.3 Otfferences Between the Modeling Levels

At the gate and switch

lavel, the circuit
expressed graphically,

as shown in the figure
Internally, the simulator represents the circuit at
both these 1levels as a graph, where the nodes
represent the primitives, and the arcs represent the
wires between them. Again, the difference between
these two levels is how state s modeled.

At the functional level, higher order primitives
are modeled as a boolean combination of gates, This

is
above,

boolean combination s scheduled and evaluated as
though 1t were a single gate. For example, an
exclusfve OR (Named XOR) with Delay N would be

textually expressed as

XOR tEXPR{outputs:olfN]; inputs:11,12>;
{olwnand{nandiil,not 12),nand{12,not 11})};

where tha delay for the entire

operation is 1lumped
into some single value N.

This sequence of operations
is described as a single expression. Whenever the
simulator schedules this XOR function, the entire
expression {s evaluated at once, rather <than as a
number of {ndividual events, This same function could
have been defined at the gate level, with the
difference that {t would result {n {(ndividual event
scheduling for each of 1{ts primitive elements.
Internally, the sfimulator represents functions as
stack machine code, similar to pascal pcode. Again,
the difference between the gate and functional level
is the medium with which the concepts are expressed,
and the fact that functional modeling allows coarser
evaluation.

The behavioral level allows the user create
even more abstract descriptions of circuit elements

using standard structured expressions such as If THEN
ELSE. It alsc allows the user to deal explicitly with
time and event scheduling in his modeling. Constructs
such as WHEN allow the user to sensitize an
abstraction’s fnputs. So a designer may Initiate a
sequence of actions based on an expression such as
WHEN CLOCK =-> 1. Internally, the simulator represents

to

behaviors as regfster machine code. Again the
difference between the functfonal and behavioral
level {s that the user deals with a higher 1level of

abstraction.
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3.4 Phystcal Modeling

Sometimes it {is not possible to create an
accurate model of a circuit Iin a reasonable period of
time, no matter what the 1level of abstraction.
Microprocessor modeling is a good example of this. In
these cases, the best model of the part s the part
iteelf. The megalogician has a physical modeling
extension {PMX) which allows the user to logfcally
model a chip by plugging 1t into the
megalogician(Stol185]. This method of modeling cuts
across all levels of abstraction, as shown 1in Table
I.

4.7 Megalogician Architectural Constraints

It was required that the megalogician support all
the functicnality described above. This meant
supporting the f{interpretation of register machine
code at the behavicoral level, of stack machine code
at the functional level and data dependency (data
flow) graphs at the gate and switch 1levels. This
required that the architecture be very flexible.
Other requirements were that the architecture be able
to support designs in the range of 1 millton gates,
and be able to run them 198¢x faster than standard
software simulators.

In order to meet the flexibility constraint, 1t
was decided that the machine had to to be
microcodeable. In order to meet the speed constraint,
it was realized that a single processor architecture
would not ba fast enough. The question was +then how
to best partition the problem in order to parallelfze

it. There are two basic methods of parallelizing an
algorithm. One is by data partitioning. The other is
functional partitioning.

Data partitioning fnvolves mak ing saveral
processors perform Identical functions on different
portions of the 1{nput data. This approach was
rejected because it required complex Interprocessor

communfcation, and expensive processors.

Instead 1t was deci{ded to explott the structure
of the simulation algorithm {1.e. use functional
partitioning). It 1Is possible to break down the
algorithm into three pieces of approximately equat
complexity. Each piece utilizes large data structures
which 1t does not have to shasre with <the other
pieces., In addition the communicatfion between the
pleces is low bandwidth and simple compared to the
data partitioning approach. We will now discuss +the
particutars of the implementation.

5.9 The System Level Architecture

The system level architecture of the MegalLogicfian
{s diagrammed below.
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A high performance 88286 based eng ineering

workstatfon serves as the nucieus of the

Megalogictan, and is used for schematic preparation

and comptlation, and also supports the user finterface
during simulatfon. This system is interfaced to the
special accelerator hardware via the workstation's
Multibus.



The accelerator consfsts of four separate
processing units, called the Queue, State, Eval-l and
Eval-2 units.

These four units are physically separate, 1.e.

each occupies a separate PC board.

The best way to understand the total architecture
i{s to view the Queue, State and Evatuation units as
being coroutines, communicating with each other
through high speed fifo channels. Their memory spaces
are disjoint. They can only communicate through the
fifos. This fi1fo form of communicattion places
restrictions on the efficiency of parallel processing
among the units, since It makes 1t difficult for
communication to occur among certafn paths. For
example, the SU can not conveniently query the QU for
data. Rather, 1t 1s the responsibility of the QU to
provide the SU with all the data It needs to process
a particular command. The Togic simulation algorithm
we execute, however, lands itself to this approach.
This approach offers performance advantages over
others. A completely shared memory would eliminate
the advantage of parallel processors, since all would

become memory access limited. (This point has been
brought up concerning hardware acceleration of
certain Al paradigms such as Blackboard and
Production systems.[Deering85] These systems, fn

their current forms, rely on memory for communication

between tasks.) The f{fo itself improves

by smoothing out frregularities

"instantaneocus" speeds of the units {their
speeds must stf{11 be balanced). The
back-and-forth communication allows one

performing tasks which are unrelated to what s
occur ing in the other units, By correctly
partitioning the tasks and data, communication 1is
minimized. In actual operation, all units process
simultaneously, each recieving packets from behind,

performance
in the
"average®
Tack of
unit to be

processing them and passing the results forward. Each
unit handles a number of tasks associated with the
contents of memory 1t contains.
5.1 The Queue Unit

The main data structure of the Queue unft {s <the
event queue, which contains all output <transitions
which are scheduled to occur {in the future as a
result of current or past {input transitions. The

event queue 1s structured as a linked T{ist of events.
Assoctiated with each event is:
1) a gate identiffer

2) the simulatfon time at which the event 1{s +to
occur, and

3) the new statel{recall that state 1{1s defined as
being a level/strength pair).

Routines exist which allow the queue unit to access

the event queue by either time

The queue unit’s primary
begin and halt the simulation. Once the circuit data
has been 1loaded 1{nto the various units, actual
simulation begins when the 8§286 instructs the Queue
Unit to simulate the circutlt for a certain amount of
simulation time. The Queue Unit begins to "run" by
fncrementing time, and processing the events
scheduled for that time.

or gate fdentifier.
responsibility 1is to

5.2 The State Unit

These events are passed to the state unit,
enters them ifnto a state array. The state
records the state at the current time step for
nodes in the circuit.

The state unit also contains
information for each element 1In
connectivity is maintained in two 1lists, each 1ist
accessable via a gate i1dentifier. The first Tist (s
called the fanin 1ist, and 1lists all the gate
fdentifiers that fanin to the given node. The second
list is called the fanout list, and 1Jlists all the
gate fdentififers that fanout from the given node.

After the state unit has updated the state array
for the particular time tick, the Queue unfit agafn
sends the events for that time tick to the state
untit. For each of the events sent, +the state unit
discovers where the event fans out using the fanout

which
array
all

the connectivity
the circutt. The

1tst. For each of these gates, the state unit bundles
together the gate 1dentifier, gate type and the
node’s input states (using the fanfn 1ist and the
state array) and sends them to the evatuation unit,
As can be seen, +the state unft’'s primary
responsibilities are to: enter current state
transitions into the state array, find all gates
which need to be evaluated and thelr {nput states,
and to send these gates and their {inputs to the

evaluation units.
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5.3 The Eval Units

The Eval-1 unit contains the functional wmodels
plus the behaviors for all simulation element types.
The Eval Unit uses the behavior along with the 1ist
of input states to evaluate the correct output for
the gate. It compares the evaluated output to the
current output. If they differ, it passes the gate
fdentifier and new output to the Queue Unit for
scheduling., If the outputs are the same, it has the
Queue Unit check for a spike on the node. The Queue
Unit contains the rise and fall delays for each gate.
It schedules an event by accessing the appropriate

delay value, adding f{ft to the current time, and
entering a nhew event at the appropriaste place in the
event queue. It checks for a sptlke by seeing if any
event 1s currently scheduled for that gate.

As can be seen, the primary responsibilities of

the Evall unit are to: evaluate gates which have
exper fenced an input transition and request an event
to be scheduled 1f necessary. Eval-2 1s used for the
physical modeling of circuits.

By using this algorithm on a large circuit where
ft 1s 1likely <that there are many events 1In a
particular time “"tick", it {s possible to have all
three processors performing useful work most of the

time. The State Unit s collecting fan-in states,
while the Evaluation Unit evaluates outputs and the
Queue Unit schedules future events.
5.4 An Example Circuit
Figure I below f{llustrates a +typical circuit.

figure Il t1lustrates how the tables would be set up
in the various units for this particular circuit.

The State Unit contalins the state array and the
Fanin and Fanout lists. Note that "A" and "B" have no
fanin and that the fanout of "H" is not shown. "A"
fans out to "C" and "D*. 1In the example, we have
consistently stripped off the strength part of the
state represantation. "A" has a state of logfic 1 at
the current time, which is 89 ns. "“C" s +the only
node to have a state of #,.

The delays for the various gates are kept in the
queue unit. "C*, "D*, "E" and "G" have delays of 14,
15, 12 and 18 ns respectively. The event pool
contains a single event, which f{ndicates that the

state of "A" changes to logic & at time 1&#F ns.
The eval wuntt simply contains the behavioral
description of the various nodes.

Figure IIl {1llustrates the state update phase of
the simulation algorithm at time 1% ns, Here, the
state unit updates the state of node "A" when it
receives the appropriate Queus Unit packet.

Figure IV illustrates the second phasa of the
algorithm at time 187 ns. 1) shows where the gate

{dent{fier portion of an event {s propagated to the
state unit. The state unft responds by propagating
out fnstruction packets to be evaluated, 2} and 3).
One packet is sent for each node to which "A" fans
out (namely "C"” and "D"}). The eval unit evaiuates the
packets ands posts the results, 4) and 5), to the
queue untt. Finally, the queue unit takes the results

and discovers when to enqueus them by looking at 1Its
delay table. This happens {n 6) and 7}.

A1l these events occur simulitanecusiy, that s
while the Queue unit s processing events, the State
unit fs building fnstruction packets and the Eval
unit is evaluating them.

The balancing of work among various units fs
based on some assumptions about the circuit being

simulated. It s optimized for simple gate and
boolean evaluatfon, assuming an average fan-out of
2.5. This means that there are 2.5 evaluations for
each scheduling. For every 1929 clocks 1t takes to
collect the fan-ins of the 2.5 gates affected by a
state update, 1t takes 49 clocks to evaluate the
output of each gate, and about 72 clocks to schedule
an event and 15 to check for a spike.

Figure I: Circuit to be simulated
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6.2 The Unit Architecture

The Queue, State and Evall
microcodable machines.

A block dfagram for the processor card
below. It consists of microcode storage, a
addressing mechantam,

units are pipeltined

appears
microcode
a register file, an ALU, a fifo

buffer, a memory {nterface, a multibus interface, and
a host of associated control logic.
UNIT BLOCK DIAGRANM
MULTIBUS
MULTIBUS ALU
INTERFRCE <24 BITO

MICROCODE ADDRESS
AND JUMP LOGIC

REGISTER
FILE
8 % 24>

INSTRUCTIONE
DECODE

T0
NEXT
|r1ro ' UNIT
D 4 F1FO
INPUT {836 X 24>
FRON |BUFFER| INTERNAL DATR BUS
PREYIOUS
UNIT

MEMORY ADDRESS TG THIS
GENERATOR AND UNITS
INTERFACE LOGIC MEMORY

Once the unit {s running, the input port {in theas
multibus interface) is used to pass fn commands and
data. Like 1in most processors, a command is
distinguished from data only tn the manner i{In which
it 1s 1interpreted. The processor f{s dasigned to
appear to execute higher level commands than single
microinstructions, A “command" in this sense is a
ssquences of microfnstructions which perform a
specific task. Within the simulation algorithm, these
tasks can be such things as "schedule an event"” or
"evaluate a two-input NAND gate”. A command is given
to a unit through fts ¥fifo, or through the input
port. This command fs actually the starting microcode
address of the sequence of microinstructions to be
executed. Upon completion of the command, a new
command is loaded. This is accomplished by a special
microinstruction which performs the following
function in hardware: 1) {f the input port s full,
transfer control to the address 1t contains, else 2}
{f the input fifo is not empty, take the next word
from the fifo and transfer control to the address it

contains, else 3) wait for condition 1 or condition 2
to occur., A command is l1ikely to contatin data. This
data also comes from the fifo or 1input port. Each

command must explicitly or implicitly
number of words of data to follow.

The ALU hardware {s used matnly for decrementing
Toop counters and doing bit masking operations.

The machine used by each unit supports a fairly
standard set of mtcrocode operations. It differs from
standard microcode machines in three ways. The first
difference {s that tt has special primitives which
allow structured access to tts data on a microcode
lavel. This allows for compact cocherent <coding of
symbolic algorithms. The second difference 1s that ft
contatns Instructfons tailored to the simulatton
algorithm requirements, such as special bit test and
address calculation instructions. The third
difference is that 1t contains a special set of
instructions used for interunit communicatton. These

specify the

fifo {instructions support the high interunit
communication bandwidth. They allow the units to
communicate at register access speeds. This high



bandwidth is essential to support the algorithm.

The communtcation fs done through channels which
connect the units together. The channels contain
FIFOs to buffer temporary load imbalances between the
units.

Eval?2 is the special PMX processor. When Evall
recieves a packet that it cannot process {such as one
that involves evaluating a physical chip, such as the
National 16P90), 1t passes it to Eval2Z. Evall and
Eval2 can process simultaneously. That is, gtven the
appropriate mix of +type E1 packets and type E2
packets, both processors can evaluate different nodes
of a circuit graph at the same time.

7.8 Measurement Data

Qur benchmarks have shown the megalogictian to
between 88 and 119 x as fast as our own
simulator. This is approximately
evaluations/sec or 49,008 events/sec.
event/second rate fs greater on circuits with
gate counts than on circuits with small gate
This {s due to the fact that 1larger circults
generally have more parallel activity going on per
time tick, and that there 1s some overhead In
starting and stoppfng a time tick. In one case, a
35,899 gate design processed 59X more events/sec than
a 254 gate design.

The maxfmum activity measured was approximately 2
events/199% gate time-ticks. This occured on small

be
software
198,800
Its
large
counts.

circuits, larger circuits range from .13 to 1
event/1080 gate time ticks. This means that event
driven simulation does at least 580 fewer

evaluations than a non-event driven approach would.

In terms of a real benchmark, a
computer design contafining several PMX-mode led
devices fncluding an Intel BZB8&, 8489, 8288 and the
Zilog 289 SIO with a multfbus card worth of software
modeled MSI/SS! glue, ROM and RAM runs 1.3 msec of
real time (12,498 cycles of the 8 MHz clock, or about

single card

1897 to 2008 8886 instruction executfons}) n 17
minutes.
8.2 Relatfon to Dataflow
Both loglic simulators and dataflow machines are
interested 1n evaluating networks of equations. 1In

the data flow case, the network is called a data flow

graph instead of a circuft. In order to understand
the relationship between discrete simulation and
dataflow, 1t is best to start with an example that
compares the two.
We will start by looking at an example dataflow
graph and see how it is processed.
“guA _ _
AV \/ \ "3" AVARY
- N I - I\ I = I\
-/ N AN RN NSO\
*3°B \/ AVARN B \/ \"3@8"
HTUE--| + |- WITE-~] + 1=D> E-=-1 + |=->
"4"C IN\_ c _ IN_ c _ AN
NN NN/ NN/
1 * 1/ * | 1= 17/
IN_7 /IN_/ "28" IN_/
5"D b D
(a) (b) {c)
Example I
A1l nodes in dataflow graphs have a call by value
semantics. This means that each node processes 1{ts
inputs only after all of them appear. The example
above calculates the expression 7+{(A-B}+{C*D). In
(a), the "-" and "*" nodes are free to fire, but the
"+" node is not. This is because the "+" node has
only one input, E, available. In (b)), the *-" and "*"
nodes have fired, so the "+" node {s free to process
its fnputs. It then does so, producing the results

shown in (c).

Let’s now see how an event driven simulator would
process the same graph. A1l nodes iIn evant driven
graphs have event driven semantics. This means that
each node processes {ts fnputs when any of <them
change. Let’'s assume in {(a) that inputs A,B,C and D
arrive at time #. Let’s further assume that each node
has a delay of 1, In (a), the "-" and "*" nodes are
free to fire, but the "+" node ts not. This Is
because the "+" node has no fnputs that have changed.

In {(b), the "-" and "*" nodes have fired, and after a
delay of 1, have arrived simultaneocusly at the Input
of the "+° node. The "+" node will now process its

inputs since they have changed. This gives the result
shown in {c).
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On the face of tt, this simulator example seems a

1ittle contrived. In particular, 1t gives the
ifmpression that the "-", "*" and "“+" nodes fire only
when both fnputs are present. This 1s not true 1n
general, since eaevent driven semantics Imply that
these nodes fire when any input changes. It seems
t;u: due to the conditions stated above, which were
at:
1) Inputs arrived to this functionatl block
simultaneously and
2) Delays were added to the varfous components to

align their processed results.

If we could somehow ensure that these
were always met for all functional blocks, then a
datafiow graph svaluation would be ftndistinguishable
from an event driven graph evaluation.

It can be shown that this can be done for s large
number of casasl{PasamanB4].

conditfons

The similarity between simulation and data flow
extends to the data structures and algorithmic
decomposition used in the Megalogictan and a token
matching data flow computer. To better see the
relationship, we have shown the Megalogician
architecture bestide that of a typical token matching
dataflow computer [Treleaven82].

Megalogician Architecture
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The events passed from the queue unit to the state
unit correspond closely to the sets of tokens passed
from the matching unit to the fetch/update unit of a
dataflow machine. The time wheel in the queue unit
corresponds to the matching store fIn the matching
unit, except that time {s used as a tag. The
fnstruction packets propagated from the state unit
are identical toc the packets passed from the
fetch/update unit in a dataflow machine. And the
events passed from the evaluation unit are fidentical
to the data tokens passed from the processing units
of a dataflow machine.’

The points where they are not fdentical are that
a dataflow machine has no analog to the state array,
a data flow architecture usually has muitiple state
units, and dataflow matching {s done by both node and
tteration. The state array is an artifact of the
simulator’s implementation. It 1s the most efficlient
thing to do given the simulator’s event driven
sematics and the small number of processing units. It
could be done away with entirely 1{1f all components
weare made call by value. in the case where we
supported multiple state unfts, a distributed state
array might cause the processor to be bottlenecked
through heavily used state units. However, since the
circular pipeline is currently well balanced, adding



extra state units buys us nothing anyway.

1t has been shown[Paseman84] that one can emulate
call by value semantics easfly in an event driven
architecture by balancing the graph. In this case,
the time wheel automatfcally does matching by both
node and time. The state array |is then made

suyperfluous in the call by value case.
9.9 Conclusions:

We have stressed that raw speedup should not be the
only consideration in developing an accelerator. 1In
particular, our goals were to balance speed with
flexibility. We have shown how the relattonship
between event driven simulation and datafiow can be
exploited in making a simulation eccelerator.
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