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Abstract 

Current digital logic simulators running on 
l nglneerlng workstations lack capacity and speed. 
This paper discusses a hardware accelerator for a 
workstatlon sfmulator whfch addresses these problems. 
The accelerator runs 100x faster than Ita software 
counterpart and can slmulate up to 1 mfllfon gates. 
The accelerator has been built and is being sold 
commercially. The archftecture of the accelerator is 
sfmflar to that of a classical dataflow machlne. We 
describe the architecture of the machine and 
Illustrate how It would sfmulate a simple circuit. We 
then briefly dfrcuss the relatifnshlp between event 
driven simulation and dataflaw. 

1.0 Introduction 

Logic Slmulatfon capsbllity la one of the key 
selection crfterfa for people evaluating 
workstations. Workstatfon based simulators provide a 
number of advantages over simulation alternatives on 
other machfnes. They run on the design engineer’s 
stand alone station. orovldlna results aulcklv .~ 
w 1 thout compet 1 ng for ’ ma infraie resources. The; 
usually exceed the modeling capablllttes of most home 
grown simulatorsi 12 state model lng, MOS , 
Btdlrectlonals, Functfonal model lng). They are 
fntearated with the schematfc capture facil itv. 30 
that-wfth a small number of steps‘, the user is-.able 
to go from schematfc editing to sfmulatfon. However, 
there are two lmportsnt areas of concern where 
workstatfon stmulators fall short. Thfs paper 
descrfbes a product, the Daisy Megalogiclan, whfch 
addresses these areas. 

1.1 Capacity 

The ffrst 1s capscfty. Usually, only circuits 
with a few thousand simple 01 ements can be 
successfully run on an engineering workstation. 
Sfmulators with this l lze limitation are useful for 
checking out pieces of a design, but they are only 
capable of completely almulsting the smallest of IC 
and board designs. Thls problem can 
overcome by addtng extra memory to the 

be partially 
This 

approach will allow users to perform 
system. 

sfmulatlons 
most large ICs and ems11 systems. Desfgns in thz 
range Include 16-bit VLSI microprocessors whtch are 
fn the IB-15K gate 
board with 160 TTL &?“?c”Is, 

and a typfcal Multtbus 

prfmftlves to describe. 
whfch mlght require 2-3K 

However, there is a growing class of users who 
require the cspabll ity to simulate I00k or 
gates. Typically, these users are developlng 

more 

computer 
large 

systems. One CO” argue that behavtoral 
models can be used to represent ill of the blocks fn 
the design which are not being immediately 
with a slmulatfon vector “capture/compare’ 

debugged, 
facfl fty 

to ‘JerlfY Consistency between the behavioral and gate 
level descrfptfons. However, even users who 
thts method for debug-level 

accept 
sfmulatfons 

desfre to run the complete system at the 
express a 

gate level 
at least once prior to commftmant to 
fmplementatfon. 

physlcal 
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Also, when one studfcs the growth of the sfze of 
typical IC and system level one real Izes 
that many engineers will be 

designs. 

deve’o~l;g 
cfrcults fn 

the 100k - 500k gate range fn a years. These 
engineers will also wish to simulate at the 
level at least some of the time. Therefore the cyizz 
of users which require sfmulations will 
grow as well. 

100k gate 

1.2 Performance 

The second major concern Ts 
workstatfons 

performance. When 
are stocked wfth enouoh mbmorv to 

completely solve all size problems, then sfmulatlon 
speed becomes a problem. Stmulatlon soeed fs measured 
by how much real’tlme elapses from the 
of the required 

specif Icatfon 
slmulatfon until results are 

presented In an analyzable format. Stnce logic design 
and debug Is an Iterative process, a fair measurement 
is found by seeing how long It takes to make a small 
change in a cfrcuft. recompfle and resfmulate. For 
10K gate design the time breakdown might be 1 
for compflatlon and 1 hour for 

ho”: 
almulatfon. 

for a 64K gate desfgn, 
However, 

the time mtght be 6 hours for 
compilation and 1 day to simulate a test 
whole set of dfagnostfcs might take 

case. A 
six monthes to 

sfmulate on such a deslgn. Obviously, the 
would have to be content with a 

eng Inter 

simulation, 
piece 

and perhaps a sampllng of 
by piece 

test 
running on the complete 

patterns 
system. He might build a 

breadboard versfon of the desfgn to pcr;y:m logic and 
timfng checks that aren’t possfble on simulator 
simply because It 1s too slow. Fault simulation is 
another area where simulation tfme la a limitstfon. 
Even for concurrent simulators, med i urn cfrcufts 
require several hours to grade and medium large 
circuits must run overnight.-Agafn, the job Is hardly 
interactive. 

Clearly, providing a slgnff icant1y faster 
simulator allows: 

(11 a speedup of 2-10 in the logic debug iteratlon 
cycle for large and very large desfgns, 
(21 the capabflity of maklng fault sfmulatfon much 
faster, and 
(31 the capabfllty of movfng system level 
and diagnostic development from 

debugglng 
breadboards to the 

engineer’s desktop. 
This paper is organized 1 nto 9 main sectfans. 

After the fntroductlon we will dfscuss alternatfve 
methods of meetfng the time/speed constraint. We will 
then discuss the nature of the problem we are 
to solve in more detail. We will 

trytng 
then d 1 scusa the 

design constraints on the architecture. we will 
follow thls with a descr lptfon of the 
archftecture, 

system 
plus an example simulatfon. Particulars 

of the unit architecture will then be dlscussed. We 
will then discuss some product tfmfng data. This wlll 
be followed by a section 0” how event dr fven 
simulation relates to data flow. 

2.0 Prevtous Solutions 

Many approaches have been taken to increase logic 
sfmulatlon speed and capacity. Perhaps the s fmplest 
approach it the assembly language coding of the ttme 
crftfcal parts of the algorithm. Unfortunately, even 
coupled with tricks such as 1 oop unroll Ing, data 
structure reorganfzatfon, vectorfzatlon and branch 
reductfon, this approach seldom gives more than a 3x 
speedupCKrohn611. 

With the availabfllty of a hlgher performance 
microprocessor to execute the simulator engine, a 
further speed enhancement can be realized. For 
example, an e Mhr, 286 based “background” processor 
wfth high apegd memorv could perform 2-3 times aa 



fast as b simulator running on b workstatton. this 
bprrdup ib real lzed prlmartly by running the 
processor wtth faster memory. Cutttng the number of 
watt atatbs In a 286 archltectur. from 3 to 0 could 
result In . 2.5x speedup 4. Coupled with 
language, thts could g!ve a 6-9x speedup. 

assembly 

Another aoorqach is to devslo~ SPOC ial hardware 
that Is exscti’y tailored to th;e pgoblem. Pf tster 
CPftrter821 reports on IIIM’s WE machine whtch. 
althouih not event drtven. provtdba thb fastest raw 
bvaluatton spbbd of any exfstfng stmulator. It can 
contain up to 4 ml 11 ion gates and cAn evaluate 960 
mtlllon gates/see. Sssakf CSasak1833 rtports on NEC’s 
HAL which is an IBM class machtnb that Is event 
drtvbn. It can contain up to 3 mtllton gatbs and can 
bV8fUAtb 360 mllllon gatbs/sbC. Thbrb arb othbr paper 
dbsfgns which capltalit. on most of the parallelfsm 
tnhorent In thb bVbnt drlvbn sf~nulstfon~ algor lthm 
IAbramoviclB31. tGlazlbr841. 

for 
Although Spbclal Hardware dbvbloped bxclusfvbly 

sfmulatfon PrOV tdbS l:hb SrbStbSt 

tncrease, it ts USUA??y dlfflcult ‘to 
performa:;; 

modify In 
field and cannot bb used for anvthlna else. On the 
Othbr hand, mlcroprocbssor basea s.ysEbms do not hAvb 

the necessary power. 
In this paper wb wfll present A SpbCfAl PUi-POSb 

AttAchbd thb Mbga?OglCfan. whfch Is 
bspOCiA1 ly 

prziffsor , 
su itbd for running evsnt driven 

slmulatlon algorithms. although It is not limited to 
running only algorlthms of thfs type. In addftfon. 

due to tts microcoded nature, it provldbs a 
balrncb of flbxlbtlfty and raw power. 

good 

3.0 The Nature of the Problem 

In order to understand the 
functlonaltty constraints, we will 

megaloglcfan’s 
briefly review 

aspects of the probltm that It solves. 

3.1 Overview of Modeling Levels 

Simulators model a cfrcutt’s behavlour at various 
?OVbls of abstraction(Tab1. I). 
The user expresses the detafls of hfs circutt at 

any of thesb levels, or wlth a mfxture of 
abstractlons, each at a different level. These levels 
range from the Analog ltvel. where a node’s stat. is 
modeled ustng real numbers (whfch represent currents 
and voltages), to the system lev’bl. wherb A nodb’s 
StAtS tS modeled ualng boolean values (whtch 
represent boolean valuer). In modbllng A partrcular 
elreutt, modelfng accuracy increases AS one travels 
down the tablb and slmulatfon spbbd fncrbssbs as one 
trAV.ls UP. Each modblfng 1evelE~:;ttngulshes ftSblf 
by tts languago of dlacaurse. language has s 
typb of dAtA wfth which It dbAlS. .a mbdlum In which 
it ts expressed. d set of prlmftlve expressions as II 

basts, a means of combfnlng the prtmttlve l xprosslons 
Into complex expressfons. and a mbana of 

~w8y from tht complextty so that 
abstracting 

seems ttself to be a prlmttfve 
the abs;:ac;;T; 

exprbsslon. 
now brlsfly dtscuss Data Types and the dtfferent 
charactertstlcs of the various modeltng levels. 

3.2 Data Types 

At thb Bbhavforal Lbvel. a node’s state could bo 
rbprbsbntbd Using two valued logfc. Howbver, an extra 
statb, “unknown” is useful for 
oecurlng at power-on, 

rbprasentfng cases 
where An fntbrnbi circuit node 

is bithbr logtc 1 or 0, but tt cannot be dbtermlnbd 
which. 

At 1OWbr 1bVblS Of Abstractton, It 18 tmportant 
to simulate trlstatb and open COllOCtOr gAtes. which 
CrbAtb illlpltcft “wlrbd-or” 
In order to simulate 

gatbs k$;:,wL;bd togbthar. 
VAr tous * sttuatfons 

accurAtbly, 
“strength”. 

It is useful to Introducb the conebpt of 
Strength Is usbd to sfgnlfy the drlvlng 

capabllty of thb node. If thb node is Acttvbly drfvbn 
t0 Its CUrrbnt lbVb1, the strength is safd to be 
forcing. If thb nodb Is pulled high or low to its 
current lbvbl through a reslstor, 
said to bb reslstivb. 

the strength IS 
If the nodb Is hfgh or low dub 

to the prbsbncb or absence of a 
thb strength Is said to 

capacfttvo 
be high llilpbdbnc.. 

chargo, 
If a 

nods’s strength 1s lndetbrminatb. It. 1s ssid to be 
unknown. A tablb Illustratfng all 
lbvbl/strbngth combinatfons Is shown bblow. 

possible 

strength 
, +----+----+----+ 

VI 01 1 t u I<-lbVO1 
+--+----+----+----+ 

IF I FB 1 Fl I FU I 
+--+----+----+----+ 
IR I RB I Rl I RU I 
+--+----+----+----+ 
Ii! I 20 I Zl t zu I 
+--+----+----+----+ 
IV I UB I Ul t uu I 
+--+----+-----+----+ 

The example below shows b CASb where 
these strength lOVb1 comblnatlons 

InAny of 
arb used. The 

clrcult consists of two unidirectional transfer gatbs 
whfch drive s common invertor. Inftlally, the 
inverter’s Input 1s drfven to sn RI 
gate. Next, the upper gate switches 

t;f th:ndupper 
the 

Invertor’s input becomes Zl. (If lbft In ihis stAtb 
for a long enough period of tlm., the node wfll docay 
to a 20.) Flnally, the upper gate switches to an 
unknown stat.. If thls state 1s “on’, then the 
Invertor’s input should be Rl. If ft is ‘Off” then 
the lnverter’s input should still be Zl. Although we 
cannot determine what strength the node wlll be, we 

Table I. The Relationship Between Multiple Modeling Levels 

Data 
Level Type Medtum 

IBehavioral t2.12 Itextual 
I I state I 
I 
IFunctfonal~ 12 

I 
Itextual 

I t statb t 
I ) 
I Gate I 12 Igraphfc 
t lstattl 
t I I 
tSwitch 
I 

[;:“;;[grAphfc 

. . . . . . . . . . . . . . . . . . . . . . . . . 
IAnalog Icontinuous 

T “Behavfoural” I Through syntax lProcedure.lCPU.ALUI 
I (Notel).“Gat.‘l Olr=--11112; I Function l(8086) I 

Prlmttlve Means of Ueans of PMX 
Expresstons Combtnatlon Abstrsctlon Model 

I I ) I 
*Gate’ I Through syntax IMacro fC0unt.r I 

IOl=(Not Il)Or 12;t(Note3) t(74161)l 
I t I I 

‘GAtb” lThrough graphtcalI*Blocks- I Nand I 
(Sbb Note 2) , connbction I 1 Not.41 t1740n116) I 

I I ) I 
BfdfrbCtfOnAl IThrough graphtcall”BIocks. I 

TrAnslStOr connbctfon I I,4K, I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

t I I I 

Note 1 
Bbhavioural bxprbssions incfuder Arlthmetlcal. Shift. Bit Reduction, Logleal 
and RblatiOnAl operators AS wbll as Condltlonal. looping, sbquentfal. and 
parallbl control constructs. 

Note 2 
Gate types fncludb Input, Output, Delay, Loglc(such as nand,nor), Trlstste, 
UnldlrectlonAI, Ram, Rorn, Pla. Latch, Flip-Flop, PMX. Setup-and-hold-chbck, 
Slgnal~rrlatlonship~chbck and Mlnlmumgulse~wldth~check. 

Note 3 
Macros cannot be combfnbd at the functlonal level. 

Note 4 
Blocks are graphtcal “black boxes’ 
Interfaces. 

wlth graphically dbflned bus and slgnal 
Their contents can be examined by descendtng into them. 
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do know that the 15~01 will be 1. This mean5 that we 
must model the state a5 being Ul. 

3.4 Physical Modeling 

Sometimes it is not possible to create an 
;;;irate mot=cftz; a circuit In a reasonable period of 

what level of abstraction 
Mfcr~pr~~essor modeling 1:“: good example of thf5. 1; 
these ca5e5, the best model of the part is the part 
itself. The mcgalogician has a physical model fng 
extension (PMXI which allow5 the User to logfcally 
model chip by 
m5galogi~fanCStoll*B3. 

plugging fnto 
Thfr method o:t modeling 

the 
cuts 

across all levels of abstraction, as shown in Table 
I. 

4.0 Megalogician Architectural Conatrafnts 

It was requlrsd that the megalogfcfanTrh~~port a11 
the functionality descrfbed above. meant 
supporting the interpretation of register machfne 
code at the behavioral level, of stack machine code 

LLUSTRATION OF IP STfiTE l’fODELIH6 

. 
h: 

At even lower levels of abstraction, 12 state 
modeling is not accurate enough. Switch level 
sfmulatlon use5 100’5 of values to model the state of 
wire5 attached to bidfractional transfer gates. 

Though they differ in the number of states 
have. all 

they 
levels above the analog level can be 

desc~ib~~,~~,modelfng state using discrete values. 
This simulators to perform 

table 
primltfva 

evaluation at these levels using lookup. The 
magalogfcfan is optimlzed for this type of pr imitfve 
evaluation. It currently doe5 not do any type of 
modeling at the analog level. 

3.3 Differences Between the Modeling Levels 

At the gate and swftch level, the cfrcuit fs 
expressed graphically. as shown in the figure above. 
Internally, the simulator represents the cfrcuft at 
both these levels a5 a graph, where the nodes 
represent the prfmftfv55, and the arcs represent the 
wires between them. Again, the difference between 
these two levels is how state is modeled. 

At the functional level, higher order 
are modeled a5 a boolean combination of 

pr imit;;:: 
gate5, 

boolean combination fs scheduled and evaluated as 
though it were a single gate. For example, an 
exclusfve OR (Named XORI with Delay N would be 
textually expressed a5 

XOR:EXPR<outputsrolCNl: fnputs:f1.12>; 
(015nandinandfil,not i2l,nandff2,not ilII1; 

where the delay for the entire operation is 1 umped 
into some single ualue N. This sequence of operatfons 
is dsscribsd as a single exprestfon. Whenever the 
simulator schedules this XOR function, the entire 
expression is evaluated at once. rather than a5 
number of indfvfdual events. This same function could 
have bsen defined at the gate level, wfth the 
difference that It would result in individual event 
scheduling for each of its prfmftive elements. 
Internally, the simulator represents function5 as 
5tack machine code. similar to Pascal pcode. Agafn. 
the difference between the gate and functional level 
is the medium with which the concepts are expressed, 
and the fact that functional modeling allOws coarser 
evaluation. 

The behavioral level allow5 the USOT to create 
even more abstract descriptions of circuft elements 
ustng 5tandard structured expressions such a5 IF THEN 
ELSE. It also allows the u55r to deal explfcftly with 
ii;; and event scheduling in his modeling. Constructs 

a5 WHEN allow the user to sensitize an 
abstraction’s inputs. So a designer may initiate a 
tequence of action5 based on an 
WHEN CLOCK -> 1. Internally, 

expression such as 

behavior5 as reg f ster 
the sfmulator represent5 

machine code. 
difference between 

the 
the functional 

Again 

level 15 that the user deals with a hfgher 
abstraction. 

and b;tt:;oral 
of 

at the functional level and 
flow) OraDh¶ at the aate and 

da;:,,~;Pey~;;;; (;;;; 

requirzd that the a;chitecturs be very flexible. 
Other requirements were that the archftecture be able 
to support deslgns in the range of 1 million gatea, 
and be able to run them 100X faster than standard 
software simulators. 

was 
I~,~t-~-; to meet the fl:Fl;;Jlity constraint, 

that the had to to Lk 
microcodeable. In order to meet the 5peed constraint, 
it was realiztd that a single procersor archftecture 
would not be fast enough. The question wa5 then how 
to best partition the problem in order to parallelfze 
it. Th5re are two basfc method5 of parallelfafng an 
algorfthm. One is by data psrtitionfng. The other 15 
functional partitlonfng. 

Data partitioning involves making sevora 1 
processors perform identical functions on different 
portions of the fnput data. Thf5 approach was 
rejected because it required complex fnterproce55or 
communication, and expensive proce5sors. 

Instead it was decided to e;Tl;ft the structure 
of the 5imulation algorithm functional 
partftfoning). It it porsfble to’ byttk down the 
algorithm into three pieces of approximately equal 
complexity. Each piece utllfzes la;& data 5tFuctures 
which it does not have to share with the other 
pf*C*S. In addition the communlcatlon between the 
pieces Is low bandwfdth and simple compared to the 
data partitioning approach. We will now d f scus5 the 
particulars of the Implementatfon. 

5.0 The System Level Archftecture 

The system level architecture of the Hegalogfcfan 
is dtagrammed below. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..*.............. 
;286 based workstation 

a.-----& d-----L +-----+ +-----+ +-----+ . 
; i isys. i ic2fsk l ivideo; ley- i 1 
1802861 IMem. I I I lboardl . 
I I I I I I I I I I . 
+---*-+ l ---*-+ +---#-+ +---,-* +---,-+ , 

# # # + li . 
#Multi- 5 BU¶ I t I . 

##+##x#~*#######u####u##*########+#####~. 
. . . . . . . . . . . . . . . +.......+.......+ ..,.................. 
.Accelerator +-5---+ # x 

IE+al2t + + 
+-----+ +--a--+, + +--+--+ +-----+ 

. IEvalll- 

. IMem. I 
+---em+ 

I II Ii I I I I 
lEvalII----f--->IOueuel=iOueuel 

. 

IUnit I I IUnit I IHem. I . 
& ---mm+ + +-e-e- + +-----+ 

I 1 I 
I +--a--+ I +--w-s+ . 
I I I I I I . 
+<---IStatel<---+ I State I 

IlJnlt I=====----1Wem. I 
+---em+ +-----+ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..*.*+ .,...” 

A high 
workstatfon 

performance 80286 based 
5erve5 a5 the nucleus en::neerfng the _ . ._ . . 

MsgaLog7cfan, and is used for 5cnsmat i c prapararron 
and compflatfon, and also supports the u5er interface 
during simulation. Thls system 15 interfaced to the 
special accelerator hardware via the workstation’5 
Multibus. 
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The accelerator consfsts of four separate 
processing “nits. called the Queue, State, Eval-1 and 
Eval-2 “nits. 

These four units are physically separate, I.e. 
each occupies a separate PC board- 

The best wav to understand the total architecture 
Is to view the &eue, State and Evaluatfon units as 
being coroutines, communicatfng with each other 
through high speed fffo channels. Their memory spaces 
are disjoint. They can only communicate through the 
f IfOS. This fifo form Of communfcatIon places 
restrictions on the efficiency of parallel processing 
among the units, since It makes It dfff fcult for 
communicatfon to occur among certain paths. For 
example, the SU can not conveniently query the OU for 
data. Rather, It Is the responslbllfty of the QU to 
provide the SU with all the data It needs to process 
a particular command. The 1ogIc slmulatfon algorithm 
we execute, however, lends Itself to this approach. 
This otherswproach offers performance advantages OVII- 

. A completely shared memory would el Imfnate 
the advantage of parallel processors, since all would 
become memory access limited. (This point has been 
brought up concerning hardware accslcratIon of 
certain AI paradigms such as Blackboard and 
Productton systems.tDeeringB51 These systems, In 
their current forms. rely on memory for communIcatIon 

between tasks.) The fIfo itself improves performance 
bv smooth lnq 
“jnstantaneous’ 

out lrrequlsritlas in 
speeds of the inIts (their 

the 
“average” 

speeds must still be balanced). The lack 
back-and-forth communication allows one unit to 2 
performing tasks which ar* unrelated to what is 
occur lng in the other “nits. 
partltloning the tasks 

BY correct1 v 
and data, conm~nIcation 1; 

minimtzed. In actual operation, al 1 un Its process 
simultaneously, each recfsvfng packets from behind. 
processing them and passing the results forward. Each 
“nit handles a number of tasks associated with the 
contents of memory it contains. 

5.1 The Queue Unit 

The main data structure of the Queue unit 1s the 
event queue. which contains all output transitions 
whfch are scheduled to occur in the future as a 
result of current or past input transttions. The 
event queue is structured as a linked list of events. 
Associdted wtth each event Is: 
1) a gate idcntif Ier 
2) the simulation time at which the event is to 
occur, and 
3) the new stateTrscal1 that state Is defined as 
being a level/strength pair). 
Routines exist which allow the quaue unit to access 
the event queue by either time or gate Identifier. 

The queue “nit’s primary responsibility is to 
begin and halt the simulation. Once the circuit data 
has been loaded into the var ‘lous units, actual 
simulation begins when the 80286 instructs the Queue 
Unit to simulate the circuit for a certain amount of 
simulation time. The Oueuc Unit begins to “run” bv 
incrementing time, and procenJIng the eventj 
scheduled for that time. 

5.2 The State Unit 

These events are passed to the state unit, which 
enters them Into a state array. The state array 
records the state at the current time step for all 
nodes In the circuit. 

The state unit also contains the connectivity 
Information for each element in the circuit. The 
connectlvlty Is maintained in two 1 ists, each 1 ist 
accessable via a gate ldentlfler. The first 1tst IS 
called the fanin list, and 1 ists al 1 the gate 
identifiers that fanin to the gfv;;dnode. The second 
list is called the fanout II&, 1 ists a11 the 
gate identifiers that fanout from the given node. 

After the state “nit has updated the state arrav 
for the particular time tick, ‘the OWN.3 unit ags in 
sends the events for that time tick to the state 
unit. For each of the events sent, the stats unit 
dIscovcrs where the event fans out using the fanout 
1 tst. For each of these gates, the state “nit bundles 
together the gate IdcntIfIer, gate type and the 
node’s input states (usina the fanfn list and the 
state array) and sends them to the evaluation unit. 

AS can be seen, the state unit’s pr Imary 
responsIbIlIties are to: enter current stats 
transItIons into the state array. find all gates 
which need to be evaluated and their Input 

and their inputs 
states. 

and to send these gates to the 
evaluation “nits. 

5.3 The Eva1 Units 

The Eval-1 unit contains the functional mode I s 
plus the behaviors for all slmulatlon element types. 
The Eva1 Unit uses the behavior along with the list 
of input states to evaluate the correct output for 
the gate. It compares the evaluated output to the 
current output. If they differ, It passes thr gate 
Idrntiffer and new outout to the Queue Unit for 
scheduling. If the outputs are the same, itTh;as the 
Oueue Unit check for a spIko on the node. OUOUO 
Unit contains the rise and fall delays for each gate. 
It schedules an event by accessing 
delay value, adding it to the 

cur;;;t l Pproprf=to 
time. and 

entering a new event at the appropriate place In the 
event queue. It checks for a spike by seeing if 
event is currently scheduled for that gate. 

any 

As can be seen. the prImarY responsIbIlf+fer of 
the Eva11 unit are. to: .evslu&te g&es which have 
experienced an input transition and request an ovrnt 
to be scheduled If necessary. Eval-2 Is used for the 
physical modeling of circuits. 

By using this algorithm on a large cIrcult where 
it is 1 Ikelv that there are many ovrnts In . 
particular time “tick”, It Is possible to have all 
three processors performing useful work most of the 
time. The State Unit is collactlng fan-in states, 
while the Evaluation Unit evaluates outputs and the 
Oueue Unit schedules future events. 

5.4 An Example Circuit 

FIgurs I below illustrates a typical cIrcuft. 
Figure II Illustrates how the tables would be set up 
in the various units for this particular circuit. 

The State Unit contains the state array and the 
Fantn and Fanout lists. Note that “A” and “B’ have no 
fanin and that the fanout of “H’ is not shown. ‘A’ 
fans out to “C” and “0’. in the example. we have 
consistently stripped off the strength part of the 
state representation. “A” has a stat; of,:ogIc 1 at 
the current time, which is 99 ns. ’ the only 
node to have a state of 0. 

The delays for the various gates are kept in the 
queue unit. “C”, ‘D”, ‘E” and ‘G” have delays of 10, 
15. 12 and 18 ns respectively. 
&::I;; a single event, .whIch 

The event pool 

Indicates that the 
“A” chanscs to loafc 0 at time 100 ns. 

The eval Wli: simply- contains the behavioral 
description of the var fous nodes. 

Figure III illustrates the state updatoHt;=so of 
the simulation algorithm at time 100 ns. 
state unit updates the state of node “A” wh& % 
receives the appropriate Queue Unit packet. 

Ffaure IV illustrates the second phase of the 
algoriEhm at time 100 ns. 1) shows where 
identifier portion of an event is propagated th* YE to 
state unit. The state unit responds by propagating 
out instruction packets to be evaluated. 2) and 3). 
One packet is sent for each node to which ‘A’ fans 
out (namely “C” and “0”). The oval unit evaluates the 
packets ands posts the results, 4) and !I), to the 
queue unit. Flnally. the queue “nit takes the results 

and dIscavers when to enqueue them by looking at its 
delay table. This happens In 6) and 7). 

All these events occur sImultsncously. that Is 
whllc the Queue unit is processing events, the Stat0 
unit Is building Instruction packets and the Eva1 
unit is evaluating them. 

The balancing of work among various units Is 
based on somytas;;mptlons about the cfrcult bofng 
simulated. optlmlzed for simple gate and 
boolean evaluation. assumlng an average f8n-out of 
2.5. This means that there are 2.5 ovsluatfons for 
each scheduling. For every 100 clocks It takes to 
collect the fan-ins of the 2.5 gates affected by a 
state update, It takes 40 clocks to ovalusto the 
output of each gate, and about 70 clocks to schedule 
an event and 15 to check for a spike. 

Figure I: Circuit to be simulatod 
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Flguro II: Inltlal MogaLog7clan Conftguratfon 
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Figurr III: Stat. Updatr phas. 
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Ftgure IV: Event Propagation phase 
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6.0 The Untt Archltacturo 

The Guru., State and Eva11 unttt are pfprl fnad 
mtcrocodable machlnea. 

A block dfagran for the proca*sor card appears 
below, It consists of mfcrocode storage. a microcode 
addressing mechanfrm. a register file. an ALU, a fffo 
buffer, a memory Interface, a aultlbus Interface, and 
a host of associated control logic. 

UNIT BLOCK DIMRRR 

IICROCODE ADDRESS 14 
aND JUMP LUSIC 

“I”;~;“’ 

<ILK X 36) 
\ 

INSTRUCTION 

TO 

Once the unit is runnfng, the lnput port (fn the 
multibus fntarfacel ts used to pass fn commands and 
data. Like In most processors, command ts 
dtstfngulshad from data only tn the mtnner In whfch 
It Is qnterprated. The processor Is designed to 
appear to execute hlgher level commands than single 
mfcroinstructfons. A “command’ In thfs sens* Is a 
sequence of mlcrotnstructtons whfch perform 
speefflc task. Within the slmulatlon algorithm, thesz 
tasks can be such things as ‘sehedulo an event. or 
‘eualuate a two-Input NAND gate”. A command Is gfven 
to a “nit through fts flfo, or through the i “put 
port. This command Is actually the startlng microcode 
address of the sequenca of mlcrolnstructlons to be 
executed. Upon completion of the command. a “eW 
command Is loaded. Thts Is accomplfshethF a rpeclal 
m*crolnstruction which perf arms 
function In hardware: 1) If the tnput port 

y;;;;s 

transfer control to the address It contains. else 2; 
!f the input fffo (s not empty, take the next word 
from the fife and transfer control to the address it 
contains, else 3) wait for condttton 1 or condftfon 2 
to occur. A command is lfkaly to contain data. Thls 
data also comas from the flfo or Input port. Each 
command must explfcltly or fmpltcftly specify the 
number of words of data to follow. 

The ALU hardware Is used matnly for dacrementfng 
loop counters and dolng bit masking operatlons. 

The machlne used by each untt supports a fafrly 
standard set of mfcrocode operations. It dfffers from 
standard mtcrocoda machines In three ways. The f Irst 
dtffarenca is that It has specfal prlmltlves which 
allow structured accass to tts data on a mlcrocoda 
level. Thfs allows for compact coherent coding of 
symbolic algortthms. The second dffference 1s that It 
contains lnstructlons tal lored to the slmulatlon 
algorithm requirements, such as special bft test and 
address calculation instructions. The third 
dlfferance 1s that It contains a special set of 
tnstructfons used for Interuntt communicatfon. These 
flfo instructions support the high lntarunlt 
communication bandwidth. They al low the units to 
communfcate at reg tster .CCeSS speeds. This high 



bandwidth is essential to support the algorithm. On the face of it. thla rlmulator example aeema a 
The communlcatlon is done.through channels which 

connect the units together. The channels conta In 
FlFOs to buffer temporary load imbalances between the 
unit.8. 

Eva12 is the spcctal PMX processor. When Eva1 I 
recieves a packet that it cannot process (such as one 
that involves evaluating a physical chip, s;:;,;’ t..: 
National 16000). it parses it to Eval2. 
Eva12 can process simultaneously. That is, given the 
appropriate mix of type El packets and type E2 
packets, both processors can evaluate different nodes 
of .a circuit graph at the same time. 

7.0 Measurement Data 

Our benchmarks have shown the megalogician to be 
between 80 and 110 x as fast as our own software 
simulator. This is approximately 100.000 
evaluations/set or 40.800 events/set. Its 
event/second rate is greater on circuits with large 
oate counts than on ctrcuits with small gate counts. 
s--- ~~~ ~~ 

This is due to the fact that larger circuits 
genera~:~khav:n;or;h~;rallel activity going on per 
time there 1s some 
starting aid stopping a time tick. In 

overhead ln 
one case, a 

35,000 gate design processed 50% more events/set than 
a 250 gate design. 

The maximum activity measured w~;c;~~;oxlmat:~l: 
events/l000 gate time-ticks. This 
circuits, larger circuits range from 1s” to 1 
event/l000 gate time ticks. This means that event 
driven simulation does at least 500x fewer 
evaluations than a non-event driven approach would. 

In terms of a real benchmark, a single card 
computer design containing several PMX-modeled 
devices Including an Intel 8086, 8089, 8288 and the 
Zilog 280 SIO with a multibus card worth of sot tware 
modeled MSl/SSl glue, ROM and RAM runs 1.3 msec of 
real time (10,400 cycles of the 8 MHz clock, or about 
1000 to 2000 8086 instruction executions) in 17 
minutes. 

8.0 Relation to Dataflow 

Both logic simulators and dataflow machines are 
interested in evaluating networks of aquatlons. In 
the data flow case, the netw;;k ;;,:;ll;i a data flow 
graph instead of a ;:;;V;;. understand 
the relationship discrete slmulatlon and 
dataf low, it is best to start with an example that 
compares the two. 

We will start by looklng at an example dataflow 
graph and see how it is processed. 
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“5”D 

(0) 
Example I 
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All nodes in dataflow graphs ti;i; a call by value 
semantics. This means that each processes Its 
inputs only after all of them appear. 
above calculates 

The example 
the expression 7+(A-B)+CC*D). In 

(a). the ‘-‘I and “*’ nodes are free to f$e. but the 
“+” “ode Is not. This is because the node has 
only one Input, E. available. In lb), the .-’ and “** 
nodes have fired, ao the ‘+* node is free to process 
its inputs. It then does so, producing the results 
shown in Cc). 

Let’s now see how a” event driven simulator would 
process the same graph. All nodes in event driven 
graphs have event driven semantics. Thls means that 
each node processes Its inputs when any of them 
change. Let’s assume in ia> that inputs A,B,C and D 
arrlvc at time 0. Let’s further assume that esch node 
has a delay of 1. In (a). the “-* and ‘*’ nodes ore 
free to fire, but the II + I node Is not. This is 
because the “+” node has no inputs that have changed. 
In (b), the ‘-’ and )‘*” nodes have fired, and after a 
delay of 1. have arrived simultaneously at the lnput 
of the “+” node. The *+” node will now process Its 
inputs since they have changed. This gives the result 
shown in fc). 

1 ttt1e contrived. Ifi particular, It g1v.s the 
impression that the *-I. “*)* and ‘+* nodoa fire onlv 
when both inputs are present. This 1s not true 1; 
general, rince event driven semantica tmply that 
these nodes fire when any i “put changes. It se*ms 
true due to tho conditions stated above, which wore 
that: 

I) Inputs arrived to thls functional block 
simultaneously and 

21 Delays ware added to the var four components to 
align their processed results. 

If we could somehow ensure that those conditions 
were always met for all functional blocks, then a 
dataflow graph evaluation would be indistlnguishablo 
from an event drtven graph evaluation. 

It can be shown that this can be dono for a largo 
number of casesIPasemanB41. 

The stmilarity between simulation and data flow 
extends to the data structures and algorithmic 
decomposition and a token 
match 1 ng data 

us;;‘,:n the MegaLogtctan 
computer. To better we the 

relationship, we have shown the MegaLogictan 
architecture beside that of a.typical token- matching 
dataflow computer LTreleaven821. 

MegaLogician Architecture 

+------* 
IEvalZI -------- 
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I I I I I -------- I I I I 
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The events passed from the queue untt to the stAt0 
unit correspond closely to the sots of tokens passod 
from the matching unit to the fetch/update unlt of a 
dataflow machine. The time wheel in thethzueue unit 
corresponds to the matching store In matching 
untt, except that time is used .s a tag. The 
instruction packets propagated from the state unit 
ore identical to the packets paesrd from thr 
fetch/update unit In a dataflow machine. And the 
events psased from the evaluation unit are identical 
to the data tokens passed from the processing un lts 
of a dataflow machlne. 

The points where they are not ldentlcal are that 
a dataflow machine has no analog to the state .rr*y, 
a data flow architecture usually has multiple st8t.o 
units, and dataflow matching is done by both node and 
lterstlon. The state array is an artifact of the 
simulator’s implementation. It is the most off iciont 
thing to do given the simulator’s event driven 
sematics and the small number of pt--ce;;;ng untts. It 
could be do;;,;way wi;;,:netir~;y components 
were made by the Cm,. whore we 
supported multiple state units, a dlstrlbutod state 
array mtght cause the processor to br bottlenecked 
through heavily used state units. However, since the 
circular pipeline is currently well balanced, add i ng 
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extra state units buys us nothing anYwaY. 
It ha3 been shownIPaseman843 that one can emulate 

call by value semantics eastly in an event drlvsn 
architecture by balancing the graph. In thts case, 
t.~.eti;;dwh;~;eaut~;:t(csllY does matching by both 

state array is then made 

superfluous In the call by value case. 

9.0 Conclusions: 

We have stressed that raw speedup should not be the 
only consfderatlon In developing an accelerator. In 
particular, our goals were to balance speed with 
flexfbllfty. We have shown how the relatfanshlp 
between event driven simulation and dataflow can be 
exploited in making a simulation accelerator. 
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